|
|
Synergistic Effect of Hard Clam Meretrix meretrix and Microalga on Elimination of Inorganic Nitrogen and Inorganic Phosphorus in Water |
ZHANG Zhidong, CHEN Aihua, WU Yangping, ZHANG Yu, CAO Yi, CHEN Suhua, TIAN Zhen, LI Qiujie |
Jiangsu Provincial Fine Breeds of Meretrix, Marine Economic Shellfish Research and Development Center of Jiangsu Province, Marine Fisheries Institute of Jiangsu Province, Nantong 226007, China |
|
|
Abstract Using the method of experimental ecology and response surface CCD model, four experimental groups were set up, namely, no clam without algae group (group O), clam without algae group (group A), algae without clam group (group B) and clam with algae group (group AB), with three replicates. According to the CCD model, 13 experimental groups were set up with the density of hard clam Meretrix meretrix (A) and the density of microalga Isochrysis galbana (B) as the influencing factors. The synergistic effect of clams and microalgae on the removal of inorganic nitrogen and inorganic phosphorus in water was investigated. The results showed that in clear water state (alga-free) environment, the elimination effect of the clam on inorganic nitrogen and inorganic phosphorus was not significant (P>0.05), it needed to cooperate with microalgae to significantly reduce the contents of inorganic nitrogen and inorganic phosphorus (P<0.05). The optimal proportion of clam and the microalga was 221 ind/m2 of clam and 1.92×106 cell/mL of microalga, and the maximal daily elimination rates in the water were 6.93% for inorganic nitrogen and 8.60% for inorganic phosphorus. The results of model prediction were accurate by verification of practical tests. Therefore, in the actual aquaculture process, the density of hard clam was about 225 ind/m2 (150 000 ind/667 m2) and the density of the microalgae was about 2.0×106 cell/mL, which achieved with the maximal daily elimination rates of (6.90±0.33)% for inorganic nitrogen and (8.57±0.29)% for inorganic phosphorus in the water.
|
Received: 30 September 2020
|
|
|
|
|
[1] 张跃群,王勇军.微藻的营养价值及其应用[J].生物学教学,2002,27(6):42-44. [2] 辛思洁,叶菁,王义祥.浅谈浮游藻类及其在水体富营养化研究中的应用[J].化学工程与装备,2018(6):3-5. [3] 王起华,张岚翠,王冰.固定化藻类细胞去除污水中氮、磷的研究进展[J].工业水处理,2005,25(6):6-8. [4] 魏东.微藻在水产养殖业中的应用及发展趋势[J].当代水产,2014,39(2):57-58. [5] 刘祥,王婧瑶,吴娟娟,等.微藻固定化条件优化及其污水氨氮去除潜力分析[J].环境科学,2019,40(7):3126-3134. [6] 丁涛.椭圆背角无齿蚌用于滇池重污染湖湾蓝藻水华控制的探讨[D].武汉:中国科学院水生生物研究所,2009. [7] 胡梦红,武震,周作强,等.鱼蚌混养对池塘水质、藻相结构及三角帆蚌生长的影响[J].水产学报,2014,38(2):200-207. [8] 朱小龙,谷娇,靳辉,等.太湖河蚬(Corbicula fluminea)对富营养水体水质的改善作用[J].湖泊科学,2015,27(3):486-492. [9] 方磊,刘健,陈锦辉,等.贝类生态修复作用及固碳效果研究进展[J].江苏农业科学,2011,39(3):7-11. [10] 靳辉,罗旭光,谷娇,等.河蚬(Corbicula fluminea)对霍甫水丝蚓(Limnodrilus hoffmeisteri)生物扰动的抑制效应[J].湖泊科学,2016,28(6):1348-1353. [11] 冯雪,周艳波,范江涛,等.鲻鱼在饥饿状态下的耗氧率和排氮率与其体质量及水温变化关系研究[J].南方水产科学,2018,14(1):114-120. [12] 李黎,刘楠,李东明,等.养殖密度对缢蛏养殖系统水质的影响[J].生态学杂志,2015,34(10):2893-2899. [13] 胡一丞,吴悦,陆丰逸,等.牟氏角毛藻与微拟球藻、青岛大扁藻混合培养技术的初步研究[J].当代水产,2016,41(6):77-78. [14] MCCARTHY J J, TAYLOR W R, TAFT J L. Nitrogenous nutrition of the plankton in the Chesapeake Bay.1.Nutrient availability and phytoplankton preferences[J].Limnology and Oceanography,1977,22(6):996-1011. [15] 李达,陈彪,胡小丽,等.利用废水培养微藻的研究进展[J].基因组学与应用生物学,2019,38(7):3105-3111. [16] 窦勇,任虹烨,吴琳,等.氮源和氮磷比对威氏海链藻生长与光合指标的影响[J].水产科学,2019,38(6):783-790. [17] 王黎颖.小球藻对水产养殖废水的净化及响应[D].天津:天津科技大学,2018. [18] 何为媛.湖泊生态系统氮循环途径及发生条件分析[J].南方农业,2019,13(25):67-69. [19] 王辉.三种海洋微藻的培养优化及其对铜和锌的吸附研究[D].哈尔滨:哈尔滨工业大学,2016. |
|
|
|