Fish Composition and Distribution Characteristics of By-Catch of Double-Vessel Bag Seine
ZHU Haichen1, ZHU Wenbin1,2, ZHANG Yazhou1,2, ZHANG Hongliang1,2, JIANG Rijin1,2, LU Zhanhui1,2, CUI Guochen1, WEI Qunyi1
1.Institute of Marine and Fisheries of Zhejiang Ocean University, Zhoushan 316021, China; 2.Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
Abstract:According to the production data of double-vessel bag seine fisheries from April to June, 2019, we analyzed the fish composition and distribution characteristics of by-catch of double-vessel bag seine. The results showed that the double-vessel bag seine along the coast of Zhejiang mainly caught juvenile Cape anchovy Engraulis japonicus, and caught 25 species of by-catch fish belonging to 7 orders and 19 families. The average body weight of blue mackerel Scomber japonicus was 1.38 g, with dominant fork length of 21—50 mm. The average body weight of the marbled rockfish Sebastiscus marmoratus was 0.45 g, with the dominant fork length of 21—30 mm. The average body weight of scaled sardine Sardinella zunasi was 0.52 g, with the dominant fork length of 21—50 mm. The China anchovy Stolephorus chinensis had average body weight of 2.12 g, with the dominant fork length of 61—70 mm. The average body weight of amberfish Decapterus maruadsi was 0.45 g, with the dominant fork length of 10—40 mm. The average body weight of Atlatic cutlassfish Trichiurus lepturus was 0.74 g, with the dominant anal length of 21—50 mm. The average body weight of butterfish Pampus argenteus was 1.84 g, with the dominant fork length of 31—70 mm. By-catch blue macherel, marbled rockfish, scaled sardine, China anchovy, amberfish, Atlatic cutlassfish, and butterfish were general species. The average relative catch densities of S. japonicus, S. zunasi, T. lepturus, S. chinensis and P. argenteus were 2.46×103 ind./h, 0.80×103 ind./h, 1.07×103 ind./h, 1.48×103 ind./h, and 1.18×103 ind./h, which were mainly distributed in the coastal waters of southern and central Zhejiang. The average relative catch density of S. marmoratus was 4.54×103 ind./h, which was mainly distributed in the coastal islands and reefs in southern Zhejiang. The average relative catch density of amberfish was 1.32×104 ind./h, which was mainly distributed in the central and northern waters of Zhejiang Province. The findings can provide reference for improving the management of double-vessel bag seine fishing.
[1]张秋华,程家骅,徐汉祥,等. 东海区渔业资源及其可持续利用[M].上海:复旦大学出版社,2007. [2]赵淑江,吕宝强,李汝伟,等.物种灭绝背景下东海渔业资源衰退原因分析[J].中国科学:地球科学,2015,45(11):1628-1640. [3]黄硕琳,唐议.渔业管理理论与中国实践的回顾与展望[J].水产学报,2019,43(1):211-231. [4]岳冬冬,王鲁民,方辉,等.我国近海捕捞渔业发展现状、问题与对策研究[J].渔业信息与战略,2015,30(4):239-245. [5]薛利建,刘子藩.东海日本鳀数量分布和生物学特性的研究[J].浙江海洋学院学报(自然科学版),2005,24(4):312-317. [6]魏涯,吴燕燕,李来好,等.船上加工日本鳀的质量安全管理研究[J].南方水产科学,2011,7(2):61-67. [7]唐明芝,连大军,卢岩,等.东黄海区鳀鱼资源变动及渔业管理[J].水产科学,2002,21(2):44-45. [8]PORTER R D. Fisheries observers as enforcement assets: lessons from the North Pacific[J].Marine Policy,2010,34(3):583-589. [9]PASCOE S. Bycatch management and the economics of discarding[J]. FAO Fisheries Technical Paper,1997,370:1-137. [10]杨吝.世界海洋渔业副渔获和丢弃问题及对策[M].广州:广东科技出版社,2014. [11]唐衍力,李文涛,万荣,等.副渔获物对渔业资源的影响及其减少方法的探讨[J].青岛海洋大学学报(自然科学版),2003,33(2):211-218. [12]杨炳忠,杨吝,谭永光,等.湛江近海虾拖网副渔获组成分析与评价[J].海洋科学,2014,38(1):65-70. [13]HALL M A, ALVERSON D L, METUZALS K I. By-catch:problems and solutions[J].Marine Pollution Bulletin,2000,41(1/2/3/4/5/6):204-219. [14]中华人民共和国农业部. SC/T 9403—2012,海洋渔业资源调查规范[S].北京:中国农业出版社,2013. [15]刘瑞玉.中国海洋生物名录[M].北京:科学出版社,2008. [16]PINKAS L, OLIPHANT M S, IVERSONI L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Fishery Bulletin,1971,152(1):1-105. [17]陈国宝,李永振,陈新军.南海主要珊瑚礁水域的鱼类物种多样性研究[J].生物多样性,2007,15(4):373-381. [18]卢占晖,苗振清,林楠.浙江中部近海及其邻近海域春季鱼类群落结构及其多样性[J].浙江海洋学院学报(自然科学版),2009,28(1):51-56. [19]张洪亮,宋之琦,潘国良,等.浙江南部近海春季鱼类多样性分析[J].海洋与湖沼,2013,44(1):126-134. [20]胡成业,水玉跃,杜肖,等.浙江苍南南部沿岸海域主要游泳动物生态位及种间联结性[J].应用生态学报,2015,26(10):3195-3201. [21]周永东,徐汉祥,刘子藩.浙江沿岸张网中主要经济幼鱼发生量与当年渔汛渔获量的关系[J].海洋学研究,2009,27(3):54-60. [22]浙江省质量技术监督局. DB33/T 949—2014,重要海洋渔业资源可捕规格及幼鱼比例[S]. 杭州: 浙江省质量技术监督局,2014. [23]宋海棠,丁天明.浙江渔场鲐鱼Scomber japonicus蓝园鲹Decapterus maruadsi不同群体的组成及分布[J]. 浙江水产学院学报,1995,14(1):29-35. [24]许明海.褐菖鲉渔业生物学初步研究[J].海洋渔业,1999,21(4):159-162. [25]吴常文.浙江近海幼带鱼分布的研究[J].浙江水产学院学报,1991,10(1):21-29. [26]郑基,王迎宾,李仁星,等.浙江海域鲐鲹鱼资源量评估[J].浙江海洋学院学报(自然科学版),2012,31(4):309-315. [27]周永东,李圣法.东海区主要经济种类三场一通道及保护区图集[M].北京:海洋出版社,2018. [28]李曰嵩.东海鲐鱼(Scomber japonica)早期生活史过程的生态动力学模拟研究[D].上海:上海海洋大学,2012. [29]唐议,赵丽华.我国海洋渔业捕捞限额制度实施试点评析与完善建议[J].水产学报,2021,45(4):613-620. [30]周永东,金海卫,蒋日进,等.浙江中北部沿岸春、夏季鱼卵和仔稚鱼种类组成与数量分布[J].水产学报,2011,35(6):880-889. [31]陈峰,瞿俊跃,方舟,等.浙江省沿岸春秋季头足类群落结构变化分析[J].水产学报,2020,44(8):1317-1328. [32]QUINN T P, SERGEANT C J, BEAUDREAU A H, et al. Spatial and temporal patterns of vertical distribution for three planktivorous fishes in Lake Washington[J].Ecology of Freshwater Fish,2012,21(3):337-348. [33]严利平,林龙山,张寒野,等.南黄海族小黄鱼昼夜渔获率差异的统计学分析[J].海洋渔业,2008,30(2):114-119. [34]胡翠林,张亚洲,李德伟,等.浙江沿岸产卵场春、夏季鱼类资源密度和群落多样性研究[J].水生生物学报,2018,42(5):984-995. [35]倪一卓,程和琴,江红,等.鱼类栖息地模拟的比较研究——以东海鲐鱼为例[J].水产科学,2009,28(12):726-732.