Assessment for Japanese Scad Decapterus maruadsi Fishery in Offshore Waters of Southern Zhejiang Based on Per Recruitment Model
CUI Mingyuan1, TIAN Siquan1,2,3,4, MA Qiuyun1,2,3,4, FAN Qingsong5
1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; 2. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China; 3. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China; 4. Key Laboratory of Oceanic Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; 5. Zhejiang Mariculture Research Institute, Wenzhou 325000, China
Abstract:The objective of this study was to assess the fishery and to provide biological reference points for the fisheries management of Japanese scad Decapterus maruadsi in the East China Sea. Specifically, we analyzed the life history traits and conducted the yield per recruitment (YPR) model and spawning stock biomass per recruitment (SSBR) model for Japanese scad. Through the scientific survey in offshore waters of Southern Zhejiang from 2015 to 2018, Japanese scad were collected and measured for the body length (cm) and body weight (g). The asymptotic length L∞ was estimated to be 26.00 cm by ELEFAN Ⅰ method, with the exponential rate of 0.19/a. Based on the length-converted catch curve, total mortality Z was estimated to be 1.41. The natural mortality M was found to be 0.55 estimated by Pauly empirical formula, according to the above growth parameters and the water temperature. Therefore, the fishing mortality F was 0.86. Based on all above estimates for life history parameters, the yield per recruitment and spawning stock biomass per recruitment models were projected for Japanese scad. The biological reference points Fmax and F0.1 were 3.602 and 0.596, respectively. The values of F20% and F40% were 0.421 and 0.220, respectively estimated from spawning stock biomass per recruitment model. The current fishing intensity is far greater than the warning line to prevent supplementary overfishing (F20%). Different M (0.35, 0.45, 0.55, 0.65, 0.75, and 0.85) and different fork length of first capture (11.21 cm, 11.87 cm, 12.76 cm, 14.00 cm, and 15.83 cm) were considered in the sensitivity analysis of yield per recruitment andspawning stock biomass per recruitment models. When M was increased from 0.35 to 0.85, the estimates for the current yield per recruitment and the current spawning stock biomass per recruitment were reduced by 10.29 and 0.79, respectively. Fork length of inflecting point was 17.79 cm, critical fork length was 13.58 cm, and the current catchable size (12.76 cm) was much smaller than the fork length of first sexual maturity, which indicates that the current fishing pressure is too heavy. Although Japanese scad in offshore waters of southern Zhejiang has not been in growth over fishing (F0.1<Fcurrent<Fmax), it is subject to recruitment over fishing. Improvements about the natural mortality and selectivity estimates are essential to enhance the stock assessment and fishery management for the Japanese scad fishery, which suffered great fishing pressure. Additionally, the fishing effort is suggested to be decreased with more conservative management measures in order to keep the sustainable development for this fishery.
崔明远, 田思泉, 麻秋云, 范青松. 基于单位补充量模型的浙江南部海域蓝圆鲹资源评价[J]. 水产科学, 2022, 41(5): 727-737.
CUI Mingyuan, TIAN Siquan, MA Qiuyun, FAN Qingsong. Assessment for Japanese Scad Decapterus maruadsi Fishery in Offshore Waters of Southern Zhejiang Based on Per Recruitment Model. Fisheries Science, 2022, 41(5): 727-737.
[1]宓崇道.东海区渔业资源现状及管理意见[J].海洋渔业,1997,19(3):103-106. [2]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2018中国渔业统计年鉴[M].北京:中国农业出版社,2018:39-42. [3]陈国宝,邱永松.南海北部陆架区蓝圆鲹的生长、死亡及合理利用研究[J].台湾海峡,2003,22(4):457-464. [4]郑基,王迎宾,李仁星,等.浙江海域鲐鲹鱼资源量评估[J].浙江海洋学院学报(自然科学版),2012,31(4):309-315,370. [5]宣立强.基于B-H模型的多鱼种资源评估[J].海洋湖沼通报,2004(2):45-51. [6]詹秉义.渔业资源评估[M].北京:中国农业出版社,1995:111. [7]冯波,陈新军,朱国平.补充型过度捕捞的确认及其对渔业管理的启示[J].资源开发与市场,2010,26(1):20-23. [8]官文江,田思泉,朱江峰,等.渔业资源评估模型的研究现状与展望[J].中国水产科学,2013,20(5):1112-1120. [9]徐旭才,丘书院,卢振彬,等.闽南—台湾浅滩渔场蓝圆鲹资源的评估[J].海洋与湖沼,1992,23(5):511-516. [10]王艳君.渔业种群亲体与补充量关系研究[D].青岛:中国海洋大学,2006:3. [11]冯波,侯刚,王学锋.基于体长的北部湾带鱼单位补充量亲体量研究[J].热带生物学报,2010,1(4):362-366. [12]李跃飞,李策,朱书礼,等.基于单位补充量模型的西江广东鲂种群资源利用现状评价[J].水生生物学报,2018,42(5):975-983. [13]李策,李新辉,李跃飞,等.基于单位补充量模型的西江赤眼鳟种群资源利用现状评价[J].中国水产科学,2019,26(1):151-160. [14]MARTÍNEZ-GONZÁLEZ C C, GONZÁLEZ-DAZA W, MOJICA J I. Length-weight relationships of fishes in the Mira basin, Colombia[J].Journal of Applied Ichthyology,2018,34(5):1216-1219. [15]高春霞,麻秋云,田思泉,等.浙江南部近海小黄鱼生长、死亡和单位补充量渔获量[J].中国水产科学,2019,26(5):925-937. [16]VON BERTALANFFY L. A quantitative theory of organic growth (inquires on growth laws. II)[J]. Human Biology,1938,10(2):181-213. [17]PAULY D. Length-converted catch curves and the seasonal growth of fishes[J]. Fishbyte,1990,8(3):24-29. [18]唐渝.太湖湖鲚生长特征和临界年龄的研究[J].生态学杂志,1986,5(3):5-9,13. [19]李建生,胡芬,严利平.东海区银鲳资源合理利用的研究[J].自然资源学报,2014,29(8):1420-1429. [20]MILDENBERGER T K, TAYLOR M H, WOLFF M. TropFishR: Tropical fisheries analysis [EB/OL]. (2020-01-28) [2020-09-10] https://cran.rproject.org/package=TropFishR. [21]PAULY D. Length-converted catch curves: a powerful tool for fisheries research in the tropics (part 1)[J]. Fishbyte,1983,1(2): 9-13. [22]PAULY D. Length-converted catch curves: a powerful tool for fisheries research in the tropics (part 2)[J]. Fishbyte,1984,2(1):17-19. [23]PAULY D. Length-converted catch curves: a powerful tool for fisheries research in the tropics (Ⅲ: Conclusion) [J]. Fishbyte,1984,2(3):9-10. [24]何宝全,李辉权.珠江河口棘头梅童鱼的资源评估[J].水产学报,1988,12(2):125-134. [25]刘逸文,张崇良,刘淑德,等.山东近海口虾蛄单位补充量渔获量评估[J].水产学报,2020,44(2):213-221. [26]PAULY D. On the interrelationships between natural mortality,growth parameters,and mean environmental temperature in 175 fish stocks[J].ICES Journal of Marine Science,1980,39(2):175-192. [27]FROESE R, DEMIREL N, CORO G, et al. Estimating fisheries reference points from catch and resilience[J].Fish and Fisheries,2017,18(3):506-526. [28]耿平,张魁,陈作志,等.北部湾蓝圆鲹生物学特征及开发状态的年际变化[J].南方水产科学,2018,14(6):1-9. [29]衷思剑,麻秋云,刘淑德,等.基于线性混合效应模型的黄鮟鱇体长体重关系的时空差异[J].中国水产科学,2018,25(6):1299-1307. [30]冯波,徐翼,卢伙胜.北部湾二长棘鲷休渔效果模拟评价[J].资源科学,2009,31(12):2201-2207. [31]张杰,张其永.闽南—台湾浅滩渔场蓝圆鲹种群的年龄结构和生长特性[J].台湾海峡,1985,4(2):209-218. [32]崔明远,陈伟峰,戴黎斌,等.浙江南部海域蓝圆鲹生长异质性及死亡特征[J].中国水产科学,2020,27(12):1427-1437. [33]颜尤明,卢振彬,戴泉水.闽中、闽东渔场蓝圆鲹生长特性的研究[J].动物学杂志,1987,22(5):6-11. [34]陈国宝,李永振,陈丕茂,等.鱼类最佳体长频率分析组距研究[J].中国水产科学,2008,15(4):659-666. [35]PAULY D, DAVID N. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency datal[J]. ICLARM Contribution,1981,32(32):205-211. [36]MILLAR R B, HOLST R. Estimation of gillnet and hook selectivity using log-linear models[J].ICES Journal of Marine Science,1997,54(3):471-477. [37]王雪辉,邱永松,杜飞雁.南海北部金线鱼生长、死亡和最适开捕体长研究[J].中国海洋大学学报(自然科学版),2004,34(2):224-230. [38]叶婷,王迎宾,周丛羽.鱼类体长频率数据结构对生长参数估算的影响分析[J].水产科学,2014,33(5):277-282. [39]梁正其,杨桂琴,杨秋菊.锦江河干流黄颡鱼的年龄、生长和资源利用研究[J].水产科学,2019,38(2):213-219. [40]朱立新,李丽芳,梁振林.不确定性对北部湾二长棘鲷渔业资源评估影响的模拟研究[J].广东海洋大学学报,2009,29(1):36-43. [41]童玉和,陈新军,田思泉,等.渔业管理中生物学参考点的理论及其应用[J].水产学报,2010,34(7):1040-1050. [42]林龙山,程家骅,凌建忠,等.东海区主要经济鱼类开捕规格的初步研究[J].中国水产科学,2006,13(2):250-256. [43]朱江峰,邱永松.南海北部带鱼生长死亡与参数动态综合模式[J].海洋学报,2005,27(6):93-99.