|
|
海洋微藻小粒级化趋势的环境驱动机制浅析 |
刘印1, 宋伦2, 刘苏萱1 |
1.大连海洋大学,辽宁 大连 116023; 2.辽宁省海洋水产科学研究院,辽宁省海洋生物资源与生态学重点实验室,辽宁 大连 116023 |
|
Research Progress on Environment-Driven Mechanism of Miniaturization Trend of Marine Microalgae: A Review |
LIU Yin1, SONG Lun2, LIU Suxuan1 |
1. Dalian Ocean University, Dalian 116023, China; 2. Key Laboratory of Marine Biological Resources and Ecology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China |
[1]LALLI C M, PARSONS T R. Introduction[M]∥LALLI C M, PARSONS T R. Biological oceanography:an introduction. 2nd ed. Amsterdam:Elsevier,1997:1-15. [2]郑白雯.北部湾北部浮游生物生态学研究[D].厦门:厦门大学,2014:1-3. [3]郭术津.东海浮游植物群集研究[D].青岛:中国海洋大学,2012:1-2. [4]宋伦,毕相东,宋广军,等.海洋真核微藻粒级结构及其环境影响因素[J].中国环境科学,2020,40(6):2627-2634. [5]宋伦,吴景,宋永刚,等.褐潮致灾种抑食金球藻在辽东湾的分布[J].环境科学研究,2017,30(4):537-544. [6]SONG L, WU J, DU J, et al. The characteristics and distribution of eukaryotic phytoplankton community in Liaodong Bay, China[J].Ocean Science Journal,2019,54(2):183-203. [7]SONG L, YANG G J, WANG N B, et al. Relationship between environmental factors and plankton in the Bayuquan Port, Liaodong Bay, China:a five-year study[J].Chinese Journal of Oceanology and Limnology,2016,34(4):654-671. [8]宋伦,宋广军,王年斌,等.辽东湾网采浮游植物粒级结构的胁迫响应[J].中国环境科学,2015,35(9):2764-2771. [9]DAUFRESNE M, LENGFELLNER K, SOMMER U. Global warming benefits the small in aquatic ecosystems[J].PNAS,2009,106(31):12788-12793. [10]REBSTOCK G A. Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California[J].Global Change Biology,2002,8(1):71-89. [11]王俊,康元德.渤海浮游植物种群动态的研究[J].海洋水产研究,1998,19(1):43-52. [12]张雪,王俊,马武,等.2014年秋季渤海网采浮游植物群落结构[J].海洋学报,2020,42(8):89-100. [13]董婧,李培军,刘悦,等.黄海北部近岸浮游植物生态特征分析[J].水产科学,1999,18(5):12-15. [14]刘述锡,隋伟娜,孙淑艳,等.北黄海北部近岸海域网采浮游植物群落结构[J].海洋湖沼通报,2015(2):128-138. [15]徐兆礼,白雪梅,袁骐,等.长江口浮游植物生态研究[J].中国水产科学,1999,6(增刊):52-54. [16]高月鑫,江志兵,曾江宁,等.春季长江口北支邻近海域浮游植物群落及其影响因子[J].海洋通报,2018,37(4):430-439. [17]朱根海,宁修仁,蔡昱明,等.南海浮游植物种类组成和丰度分布的研究[J].海洋学报(中文版),2003,25(S2):8-23. [18]粟丽,陈作志,黄梓荣,等.2015年春季南海北部陆架海域网采浮游植物群落结构及其与环境因子关系[J].海洋学研究,2019,37(3):86-96. [19]HALLEGRAEFF G M. Ocean climate change, phytoplankton community responses, and harmful algal blooms:a formidable predictive challenge1[J].Journal of Phycology,2010,46(2):220-235. [20]冯士筰.海洋科学导论[M].北京:高等教育出版社,1999:83-100. [21]张正斌.海洋化学[M].青岛:中国海洋大学出版社,2004:12-38. [22]STAEHR P A, BIRKELAND M J. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species[J].Phycologia,2006,45(6):648-656. [23]EDWARDS M, RICHARDSON A J. Impact of climate change on marine pelagic phenology and trophic mismatch[J].Nature,2004,430(7002):881-884. [24]LUNDHOLM N, CLARKE A, ELLEGAARD M. A 100-year record of changing Pseudo-Nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature[J].Harmful Algae,2010,9(5):449-457. [25]SOMOLON S D, QIN D, MANNING M, et al. Climate Change 2007:the physical science basic. Contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate change[R].Cambridgeshire:Cambridge University Press,IPCC,2007:3-18. [26]夏滨,吕瑞华,孙丕喜.2000年秋季黄、东海典型海区叶绿素a的时空分布及其粒径组成特征[J].黄渤海海洋,2001,19(4):37-42. [27]ATKINSON D, CIOTTI B J, MONTAGNES D J S. Protists decrease in size linearly with temperature:ca.2.5% ℃-1[J].Proceedings of the Royal Society of London Series B:Biological Sciences,2003,270(1533):2605-2611. [28]MONTAGNES D J S, FRANKLIN D J. Effect of temperature on diatom volume,growth rate,and carbon and nitrogen content:reconsidering some paradigms[J].Limnology and Oceanography,2002,47(4):1272. [29]SOMMER U, LEWANDOWSKA A. Climate change and the phytoplankton spring bloom:warming and overwintering zooplankton have similar effects on phytoplankton[J].Global Change Biology,2011,17(1):154-162. [30]杨茹君.不同环境污染物条件下海洋浮游植物生长的粒径效应研究[D].青岛:中国海洋大学,2004:1-8. [31]SHERIDAN J A, BICKFORD D. Shrinking body size as an ecological response to climate change[J].Nature Climate Change,2011,1(8):401-406. [32]CALDEIRA K, WICKETT M E. Oceanography:anthropogenic carbon and ocean pH[J].Nature,2003,425(6956):365. [33]STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013:the physical science basic. Contribution of working group Ⅰ to fifth assessment report of the intergovernmental panel on climate change[R].Cambridge:Cambridge University Press,2014:2-32. [34]丁兆坤,王福平,许友卿.海水酸化对海洋生物代谢的影响及机理[J].水产科学,2015,34(5):331-334. [35]阮祚禧,高坤山.钙化藻类的钙化过程与大气中CO2浓度变化的关系[J].植物生理学通讯,2007,43(4):773-778. [36]国家海洋局.2012年中国海洋环境状况公报[R].北京:国家海洋局2013:20-22. [37]LIU Y, PENG Z C, ZHOU R J, et al. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2[J].Scientific Reports,2014,4:5148. [38]毛雪微,刘光兴,王为民,等.CO2浓度升高对三角褐指藻和旋链角毛藻种群生长的影响[J].中国海洋大学学报(自然科学版),2016,46(3):60-66. [39]CE H R, LEBLANC K, DITULLIO G R, et al. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea[J].Marine Ecology Progress Series,2007,352:9-16. [40]BOURDIN G, GAZEAU F, KERROS M E, et al. Dynamics of transparent exopolymeric particles and their precursors during a mesocosm experiment:impact of ocean acidification[J].Estuarine, Coastal and Shelf Science,2017,186:112-124. [41]HARRIS S L, VARELA D E, WHITNEY F W, et al. Nutrient and phytoplankton dynamics off the west Coast of Vancouver Island during the 1997/98 ENSO event[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2009,56(24):2487-2502. [42]马莎.浮游植物及群落结构对海洋酸化响应的研究[D].上海:上海海洋大学,2018:1-5. [43]EGGE J K, AKSNES D L. Silicate as regulating nutrient in phytoplankton competition[J].Marine Ecology Progress Series,1992,83:281-289. [44]KUDELA R M, DUGDALE R C. Nutrient regulation of phytoplankton productivity in Monterey Bay, California[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2000,47(5/6):1023-1053. [45]侯立军,陆健健,刘敏,等.长江口沙洲表层沉积物磷的赋存形态及生物有效性[J].环境科学学报,2006,26(3):488-494. [46]邓春梅,于志刚,姚鹏,等.东海、南黄海浮游植物粒级结构及环境影响因素分析[J].中国海洋大学学报(自然科学版),2008,38(5):791-798. [47]黄邦钦,刘媛,陈纪新,等.东海、黄海浮游植物生物量的粒级结构及时空分布[J].海洋学报,2006,28(2):156-164. [48]孙军,刘东艳,张晨,等.渤海中部和渤海海峡及其邻近海域浮游植物粒级生物量的初步研究:Ⅰ.浮游植物粒级生物量的分布特征[J].海洋学报,2003,25(5):103-112. [49]SONG L, WU J, DU J, et al. Comparison of two methods to assess the size structure of phytoplankton community assemblages, in Liaodong bay, China[J].Journal of Ocean University of China,2019,18(5):1207-1215. [50]张霞,黄小平,施震,等.珠江口超微型浮游植物时空分布及其与环境因子的关系[J].生态学报,2013,33(7):2200-2211. [51]蔡昱明,宁修仁,朱根海,等.南极普里兹湾浮游植物现存量与初级生产力粒级结构和新生产力研究[J].海洋学报,2005,27(4):135-147. [52]康建华,林毅力,黄舒虹,等.厦门岛西北海域浮游植物生物量粒级结构及其环境影响因素[J].海洋开发与管理,2020,37(12):54-62. [53]COCIASU A, DOROGAN L, HUMBORG C, et al. Long-term ecological changes in Romanian coastal waters of the Black Sea[J].Marine Pollution Bulletin,1996,32(1):32-38. [54]韩秀荣.长江口及邻近海域浮游植物生长的多环境效应因子影响解析研究[D].青岛:中国海洋大学,2009:1-6. [55]CHARLES F, LANTOINE F, BRUGEL S, et al. Seasonal survey of the phytoplankton biomass, composition and production in a littoral NW Mediterranean site, with special emphasis on the picoplanktonic contribution[J].Estuarine, Coastal and Shelf Science,2005,65(1/2):199-212. [56]YUNEV O A, CARSTENSEN J, MONCHEVA S, et al. Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes[J].Estuarine, Coastal and Shelf Science,2007,74(1/2):63-76. [57]俞志明,沈志良.长江口水域富营养化[M].北京:科学出版社,2011:16-35. [58]胡明辉,杨逸萍,徐春林,等.长江口浮游植物生长的磷酸盐限制[J].海洋学报,1989,11(4):439-443. [59]HARRISON P J, HU M H, YANG Y P, et al. Phosphate limitation in estuarine and coastal waters of China[J].Journal of Experimental Marine Biology and Ecology,1990,140(1/2):79-87. [60]JIAO N Z, WANG R. Size structures of microplankton biomass and production in Jiaozhou Bay, China[J].Journal of Plankton Research,1994,16(12):1609-1625. [61]孙军.海洋浮游植物细胞体积和表面积模型及其转换生物量[D].青岛:中国海洋大学,2004:1-5. [62]王江涛,曹婧.长江口海域近50 a来营养盐的变化及其对浮游植物群落演替的影响[J].海洋环境科学,2012,31(3):310-315. [63]LAURIA V, ATTRILL M J, PINNEGAR J K, et al. Influence of climate change and trophic coupling across four trophic levels in the Celtic sea[J].PLoS One,2012,7(10):e47408. [64]GAYOSO A M. Long-term phytoplankton studies in the Bahía Blanca Estuary,Argentina[J].ICES Journal of Marine Science,1998,55(4):655-660. [65]GUINDER V A, POPOVICH C A, MOLINERO J C, et al. Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina[J].Marine Biology,2010,157(12):2703-2716. [66]辛明.长江口海域关键环境因子的长期变化及其生态效应[D].青岛:中国海洋大学,2014:3-8. [67]董婧,刘海映,毕远溥,等.黄海北部近岸的浮游甲藻生态[J].海洋水产研究,2002,23(4):46-50. [68]HARE C E. Consequences of iron limitation and climate change on phytoplankton community composition[D].Newark: University of Delaware,2007:2-9. [69]SHI D L, XU Y, HOPKINSON B M, et al. Effect of ocean acidification on iron availability to marine phytoplankton[J].Science,2010,327(5966):676-679. [70]宋伦,毕相东,付杰,等.黄海北部真核微藻粒级结构及环境关联[J].中国环境科学,2021,41(3):1336-1344. [71]宋伦,吴景,李楠,等.辽东湾潜在褐潮生物时空分布及环境关联[J].中国环境科学,2018,38(8):3060-3071. [72]宋伦,王年斌,宋永刚,等.辽宁近岸浑浊海域网采浮游生物的粒径结构特征[J].应用生态学报,2013,24(4):900-908. [73]董波,薛钦昭,李军.滤食性贝类摄食生理的研究进展[J].海洋科学,2000,24(7):31-34. [74]王俊,姜祖辉,唐启升.栉孔扇贝的滤食率与同化率[J].中国水产科学,2001,8(4):27-31. [75]包永波,尤仲杰.海洋滤食性贝类摄食率影响因子研究现状[J].海洋水产研究,2006,27(1):76-80. [76]PIERCE R W,TURNER J T. Ecology of planktonic ciliates in marine food webs[J].Reviews in Aquatic Sciences,1992,6(2):139-181. [77]张江涛,殷克东,董丽华.春季黄海微型浮游动物对不同粒径浮游植物的摄食速率研究[J].海洋科学,2011,35(9):1-7. [78]CHEN B Z, LIU H B. Relationships between phytoplankton growth and cell size in surface oceans:interactive effects of temperature, nutrients, and grazing[J].Limnology and Oceanography,2010,55(3):965-972. |
[1] |
段健诚, 胡吉卉, 穆金鑫, 邓高威, 高威, 牟华, 张庆起, 高焕. 不同环境因素对虾肝肠胞虫感染脊尾白虾的影响研究[J]. 水产科学, 2023, 42(2): 296-302. |
[2] |
姜冰,宋伦,时明明,宋广军,王影. 辽宁近海外来赤潮海洋微藻入侵现状[J]. 水产科学, 2015, 34(12): 795-800. |
[3] |
王洪斌,成明,李士虎,阎斌伦. 4种海洋微藻对外源硒的吸收和胁迫的响应[J]. 水产科学, 2013, 32(5): 289-292. |
[4] |
王洪斌,缪雨溪,李信书,李士虎,阎斌伦. 4种海洋微藻酸性磷酸酶的分离纯化及其性质的研究[J]. 水产科学, 2013, 32(3): 153-156. |
[5] |
胡长伟,刘志礼. 富含EPA的海洋微藻的规模化生产[J]. 水产科学, 2007, 26(8): 475-477. |
[6] |
孙建明,吴垠,桂远明,刘毅,张丽莉. 海洋微藻全封闭、连续式培养初步试验[J]. 水产科学, 2003, 22(3): 22-24. |
|
|
|
|