Strontium Labeling Technique of Otolith in Roughskin Sculpin Trachidermus fasciatus Based on Immersion Method
YANG Zuchang1, HU Wangjiao1, FENG Guangpeng1, ZHANG Hui1, ZHENG Yueping2, JI Qiang3
1. Shanghai Yangtze River Estuary Fishery Resources Proliferation and Ecological Restoration Engineering Technology Research Center, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; 2. Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 202162, China; 3. Shanghai Songjiang Fisheries Technical Extension Station, Shanghai 201699, China
Abstract:In order to probe the application of otolithic microchemical labeling technology in breeding and release of roughskin sculpin Trachidermus fasciatus, roughskin sculpin with body length of (8.34±0.77) cm and body weight of (7.89±2.57) g was reared in the third stage filtrated water containing SrCl2·H2O at concentrations of 0, 12, 18, 36 and 72 mg/L for 7 days at water temperature of (28.0±3) ℃ to explore the effect of different concentrations of strontium on the strontium labeling effect of otolites in roughskin sculpin. The results showed that there was no significant difference in mortality and growth in roughskin sculpin exposed to different concentrations of strontium labeling. There was an obvious linear relationship between the concentration of exogenous strontium and the ratio of Sr/Ca at the edge of otolith. With the increase in strontium concentration, the labeled Sr/Ca value was gradually increased, and the labeling effect increased significantly. The contents of strontium in muscle and gill were found to be a trend of first increasing and then decreasing with the change of time after labeling, with complete metabolism of the residual strontium in muscle within 30 days after labeling. The findings indicated that the strontium labeling principle and method were reliable and safe in the large-scale release population of roughskin sculpin. It was recommended that 36 mg/L be of the optimal labeling dose for exogenous strontium for 7 days labeling period.
[1] 庄平. 长江口鱼类[M]. 上海:上海科学技术出版社, 2006:168-172. [2] 乐佩琦,陈宜瑜. 中国濒危动物红皮书:鱼类[J]. 北京:科学出版社,1998. [3] 司飞,任建功,王青林,等.基于浸泡法的牙鲆耳石锶标记技术研究[J].中国水产科学, 2019,26(3):534-545. [4] 付自东,谢天明,宋昭彬.鱼类耳石元素指纹研究进展[J].应用与环境生物学报,2007,13(2):278-283. [5] 郭彪,王硕,张博伦,等.基于浸泡法的鮻耳石锶标记技术研究[J].海洋渔业,2021,43(5):532-541. [6] 张川,张明燡,郑春芳,等.鮻幼鱼的耳石锶标记[J].生态学杂志,2024,43(4):975-981. [7] 张翼,姜亚洲,徐开达,等. 锶元素对黑鲷幼鱼耳石的标记效果分析[J].海洋渔业,2018,40(2):171-178. [8] 邱晨,姜涛,陈修报,等.鲤(Cyprinus carpio)仔鱼耳石锶(Sr)标记及其时滞特征的研究[J].海洋与湖沼,2019,50(4):903-912. [9] 邱晨,姜涛,陈修报,等.鲤仔鱼耳石上锶标记的持久性评价[J].湖北农业科学,2021,60 (8):114-117. [10] 张翼,黎雨轩,徐献明,等.环境因子对大黄鱼耳石锶元素富积的影响[J].海洋渔业,2013,35(3):278-288. [11] 张辉,姜亚洲,袁兴伟,等.富锶水体处理对大黄鱼耳石和肌体中锶含量的影响[J].海洋渔业,2019,41(3):338-345. [12] EISENBERG E. The biological metabolism of strontium[G]. Zipkin I. In Biological Mineralization.New York:John Wiley and Sons,1973:435-552. [13] 蔺艳,张莹茜,盘强文,等.锶矿泉水对人血管内皮细胞的增殖和功能的影响[J].中国食品卫生杂志,2013,25(2):136-139. [14] 李峰,刘斌,赵信义,等.含锶磷酸钙骨水泥的细胞毒性[J].中国现代医学杂志,2006,16(20):3080-3082. [15] ROBERTO V P, MARTINS G, PEREIRA A, et al. Insights from dietary supplementation with zinc and strontium on the skeleton of zebrafish, Danio rerio (Hamilton, 1822) larvae: from morphological analysis to osteogenic markers[J]. Journal of Applied Ichthyology,2018,34(2):512-523. [16] 刘存岐,王安利,王维娜,等.海水中Cu 2+,Mn2+和Sr2+对中国对虾糠虾幼体成活率与变态率的影响[J].中山大学学报(自然科学版),2000,39(增刊1):132-134. [17] 王臣, 刘伟, 战培荣, 等. 外源Sr2+在大麻哈鱼胚胎耳石上的沉积[J]. 应用生态学报, 2015,26(10): 3189-3194. [18] GETCHELL R G, BOWSER P R, CORNWELL E R, et al. Safety of strontium chloride as a skeletal marking agent for Pacific salmon[J]. Journal of Aquatic Animal Health,2017,29(4):181-188, [19] LIU M Z, JIANG R, ZHANG H, et al. Otolith marking with strontium for stock assessment in Coilia nasus[J].Frontiers in Marine Science, 2022, 9:890219 [20] 张崇良,徐宾铎,薛莹,等.渔业资源增殖评估研究进展与展望[J].水产学报,2022,46(8):1509-1524. [21] YANG J, JIANG T, LIU H B. Are there habitat salinity markers of the Sr∶Ca ratio in the otolith of wild diadromous fishes? A literature survey[J]. Ichthyological Research, 2011,58(3):291-294. [22] JIANG T, YANG J, LIU H B, et al. Life history of Coilia nasus from the Yellow Sea inferred from otolith Sr∶Ca ratios[J]. Environmental Biology of Fishes, 2012,95(4):503-508. [23] DOUBLEDAY Z A, HARRIS H H, IZZO C, GILLANDERS B M. Strontium randomly substituting for calcium in fish otolith aragonite[J]. Analytical Chemistry,2014,86(1):865-869. [24] 王茂林,张秀梅,高天翔,等.水体钙离子质量浓度对褐牙鲆幼鱼鱼体和耳石元素成分的影响[J].南方水产科学,2013,9(3):31-38. [25] KUROKI M, BUCKLEY R M, LECLAIR L L, et al. Validation and efficacy of transgenerational mass marking of otoliths in viviparous fish larvae[J]. Journal of Fish Biology,2010,77(1):292-298. [26] SCHRODER S L, KNUDSEN C M, VOLK E C. Marking salmon fry with strontium chloride solutions[J].Canadian Journal of Fisheries and Aquatic Sciences,1995,52(6):1141-1149. [27] 李秀启,丛旭日,师吉华,等.耳石锶标记在识别鳙(Aristichthys nobilis)放流个体的可行性[J].湖泊科学,2017,29(4):914-922. [28] MILTON D A, CHENERVY S R. Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer)[J]. Journal of Experimental Marine Biology and Ecology,2001,264(1):47-65. [29] 王臣. 基于大麻哈鱼耳石的化学标记及其应用研究[D]. 上海:上海海洋大学, 2015. [30] YAMADA S B, MULLIGAN TJ, FAIRCHILD S J. Strontium marking of hatchery-reared coho salmon (Oncorhynchus kisutch, Walbaum) [J]. Journal of Fish Biology,1979,14:267-275.