Difference Analysis in Intestinal Flora of Juvenile Echiura Worm Urechis unicinctus with Different Growth Rates
DONG Haomiao1,2, WANG Fangyi3, XU Dong4, JIAO Xudong1,2, WANG Weizhong4
1. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Weifang Fisheries Technology Extension Station, Weifang 261000, China; 4. Shandong Blue Ocean Technology Co., Ltd, Yantai 261400, China
Abstract:In order to explore the relationship between growth difference of juvenile echiura worm Urechisunicinctus and its intestinal microbiota with different growth rates, the composition and changes in bacterial flora were analyzed in the intestines especially dissected of the juvenile echiura worm anesthesized by MS-222 with body weight of greater than 700 mg in fast-growth group (FG group) and with body weight of less than 300 mg in slow-growth group (SG group) sampled in three 100 cm2 substrate regions in the same culture pond by 16S rRNA high-throughput sequencing. The results showed that greater diversity of intestinal flora species was found in the juvenile echiura worm in FG group than that in FG group, with dominant bacteria in Proteobacteria and Firmicutes in the intestine. There was the maximal relative abundance of Ralstonia in FG group and significantly higher than that in SG group, while there was the maximal abundance of Candidatus_hepatoplasma in SG group and significantly higher than that in FG group.LEfSe analysis revealed that more Pseudomonas, which was speculated to promote individual growth, was observed in FG group, with more Candidatus_hepatoplasma in SG group, or the marker genus with too slow growth rate. Functional prediction showed that the relative abundance of bacteria involved in cellular processes and signaling was significantly higher in FG group than that in SG group, while the relative abundance of microorganisms involved in cell growth and death function groups accounted for a significant advantage in SG group, indicating that there was a correlation between the growth rate of echiura worm and the intestinal flora. The findings can provide theoretical guidance for the healthy breeding and efficient cultivation of echiura worm.
[1] CHEN J, WANG Y J, YANG Z, et al. Identification and validation of the reference genes in the echiuran worm Urechis unicinctus based on transcriptome data[J] . BMC Genomics,2023,24(1):248. [2] LI J J, LU J J, ASAKIYA C, et al. Extraction and identification of three new Urechis unicinctus visceral peptides and their antioxidant activity[J] . Marine Drugs,2022,20(5):293. [3] LI X W, MA Y Y, ZUO Y J, et al. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3[J] . Analytical Methods,2021,13(21):2405-2414. [4] 胡美燕, 李琪,孔令锋,等.中国刺参与日本红刺参杂交子一代的早期生长比较[J] .中国海洋大学学报(自然科学版),2009,39(增刊):375-380. [5] NIE H T, ZHENG M G, WANG Z X, et al. Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Manila clam Ruditapes philippinarum[J] . Functional & Integrative Genomics,2021,21(3/4):341-353. [6] SECOR D H, GUNDERSON T E. Effects of hypoxia and temperature on survival, growth, and respiration of juvenile Atlantic sturgeon, Acipenser oxyrinchus[J] . Fishery Bulletin-National Oceanic and Atmospheric Administration,1998,96(3):603-613. [7] 陈德举,强俊,陶易凡,等. 不同溶氧水平对吉富罗非鱼幼鱼生长、血液生化、脂肪酸组成及其抗海豚链球菌病的影响[J] .淡水渔业,2019,49(4):83-89. [8] BRETT J R, BLACKBURN J M. Oxygen requirements for growth of young coho (Oncorhynchus kisutch) and sockeye (O. nerka) salmon at 15 ℃[J] . Canadian Journal of Fisheries and Aquatic Sciences,1981,38(4):399-404. [9] 许星鸿,刘统昊,朱晓莹,等.铅、镉、铬和锌盐对单环刺螠急性毒性效应的研究[J] .水产科学,2022,41(6):1029-1035. [10] 许星鸿,朱晓莹,阙义进,等.pH、温度和盐度对单环刺螠消化酶和溶菌酶活力的影响[J] .水产科学,2017,36(2):138-142. [11] GAO Q F, WANG Y S, DONG S L, et al. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata:Holothuroidea):evidence from carbon stable isotope[J] . Aquaculture,2011,319(1/2):272-276. [12] 韩焕福,马正,王亚男,等.三种藻粉对单环刺螠生长、体壁成分和消化酶活性的影响[J] .海洋湖沼通报,2021,43(5):143-148. [13] 胡丽萍,姜黎明,张建柏,等.饵料种类、配比及投喂方式对单环刺螠幼虫生长和变态的影响[J] .大连海洋大学学报,2021,36(4):587-594. [14] MUNAENI W, WIDANARNI, YUHANA M, et al. Impact of dietary supplementation with Eleutherine bulbosa (Mill. ) Urb. on intestinal microbiota diversity and growth of white shrimp, Litopenaeus vannamei[J] . Aquaculture,2020,528:735466. [15] 张家松,段亚飞,张真真,等.对虾肠道微生物菌群的研究进展[J] .南方水产科学,2015,11(6):114-119. [16] 唐杨,刘文亮,宋晓玲,等.饲料中补充蜡样芽孢杆菌对凡纳滨对虾生长及其肠道微生物组成的影响[J] .水产学报,2017,41(5):766-774. [17] PÉREZ T, BALCÁZAR J L, RUIZ-ZARZUELA I, et al. Host-microbiota interactions within the fish intestinal ecosystem[J] . Mucosal Immunology,2010,3(4):355-360. [18] XIONG J B, NIE L, CHEN J. Current understanding on the roles of gut microbiota in fish disease and immunity[J] . Zoological Research,2019,40(2):70-76. [19] CHOI M J, OH Y D, KIM Y R, et al. Intestinal microbial diversity is higher in Pacific abalone (Haliotis discus Hannai) with slower growth rates[J] . Aquaculture,2021,537:736500. [20] LI X M, YAN Q Y, XIE S Q, et al. Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L. )[J] . PLoS One,2013,8(5):e64577. [21] 李英英,陈曦,宋铁英.不同生长速度的大黄鱼肠道菌群结构的差异[J] .大连海洋大学学报,2017,32(5):509-513. [22] WILSON K. Preparation of genomic DNA from bacteria[J] . Current Protocols in Molecular Biology,2001,Chapter 2:Unit2.4. [23] MAGOČ T, SALZBERG S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J] . Bioinformatics,2011,27(21):2957-2963. [24] BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J] . Nature Methods,2013,10(1):57-59. [25] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of Chimera detection[J] . Bioinformatics,2011,27(16):2194-2200. [26] WANG Y Y, GUO H, GAO X G, et al. The intratumor microbiota signatures associate with subtype, tumor stage, and survival status of esophageal carcinoma[J] . Frontiers in Oncology,2021,11:754788. [27] BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J] . Microbiome,2018,6(1):90. [28] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J] . Nature Biotechnology,2019,37(8):852-857. [29] LIN M, ZENG C X, JIA X Q, et al. The composition and structure of the intestinal microflora of Anguilla marmorata at different growth rates:a deep sequencing study[J] . Journal of Applied Microbiology,2019,126(5):1340-1352. [30] SHI Y, MA D Y, ZHAI S W. Revealing the difference of intestinal microbiota composition of cultured European eels (Anguilla anguilla) with different growth rates[J] . Israeli Journal of Aquaculture - Bamidgeh,2020,72:1-12. [31] SUN Y Z, YANG H L, LING Z C, et al. Gut microbiota of fast and slow growing grouper Epinepheluscoioides[J] . African Journal of Microbiology Research, 2009, 3(11):713-720. [32] 李东萍,郭明璋,许文涛.16S rRNA测序技术在肠道微生物中的应用研究进展[J] .生物技术通报,2015,31(2):71-77. [33] GHANBARI M, KNEIFEL W, DOMIG K J. A new view of the fish gut microbiome:advances from next-generation sequencing[J] . Aquaculture,2015,448:464-475. [34] CHAPAGAIN P, ARIVETT B, CLEVELAND B M, et al. Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (Oncorhynchus mykiss)[J] . BMC Genomics,2019,20(1):788. [35] ZHANG Y, WEN B, DAVID M A, et al. Comparative analysis of intestinal microbiota of Discus fish (Symphysodon haraldi) with different growth rates[J] . Aquaculture,2021,540:736740. [36] 李存玉,徐永江,柳学周,等.池塘和工厂化养殖牙鲆肠道菌群结构的比较分析[J] .水产学报,2015,39(2):245-255. [37] 窦妍,丁君,王轶南,等.黄、渤海春季刺参肠道及养殖池塘细菌菌群的多样性[J] .大连海洋大学学报,2014,29(6):572-576. [38] ZHOU M, LIANG R S, MO J F, et al. Effects of brewer's yeast hydrolysate on the growth performance and the intestinal bacterial diversity of largemouth bass (Micropterus salmoides)[J] . Aquaculture,2018,484:139-144. [39] IKEDA-OHTSUBO W, BRUGMAN S, WARDEN C H, et al. How can we define “optimal microbiota?” :a comparative review of structure and functions of microbiota of animals, fish, and plants in agriculture[J] . Frontiers in Nutrition,2018,5:90. [40] NYMAN A, HUYBEN D, LUNDH T, et al. Effects of microbe- and mussel-based diets on the gut microbiota in Arctic charr (Salvelinus alpinus)[J] . Aquaculture Reports,2017,5:34-40. [41] LOZUPONE C A, STOMBAUGH J I, GORDON J I, et al. Diversity, stability and resilience of the human gut microbiota[J] . Nature,2012,489(7415):220-230. [42] NARUSHIMA S, SUGIURA Y, OSHIMA K, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia[J] . Gut Microbes,2014,5(3):333-339. [43] COGEN A L, NIZET V, GALLO R L. Skin microbiota:a source of disease or defence?[J] . British Journal of Dermatology,2008,158(3):442-455. [44] SEMOVA I, CARTEN J D, STOMBAUGH J, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish[J] . Cell Host & Microbe,2012,12(3):277-288. [45] RAWLS J F, MAHOWALD M A, LEY R E, et al. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection[J] . Cell,2006,127(2):423-433. [46] COTTRELL M T, KIRCHMAN D L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter[J] . Applied and Environmental Microbiology,2000,66(4):1692-1697. [47] 郑艺,张家超,郭壮,等.基于高通量测序技术分析肠道菌群及其影响因素的研究进展[J] .中国食品学报,2014,14(11):157-164. [48] TANG Y, MA S, LIU Y, et al. Intestinal microbial diversity and functional analysis of Urechis unicinctus from two different habitats:pond polycultured with Penaeus japonicus and coastal zone[J] . Aquaculture Environment Interactions,2021,13:211-224. [49] GONZÁLEZ-PALACIOS C, FREGENEDA-GRANDES J M, ALLER-GANCEDO J M. Possible mechanisms of action of two Pseudomonas fluorescens isolates as probiotics on saprolegniosis control in rainbow trout (Oncorhynchus mykiss Walbaum)[J] . Animals,2020,10(9):1507. [50] GIRI S S, JUN J W, YUN S, et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio[J] . Aquaculture,2020,514:734489. [51] SUN F L, XU Z T. Significant differences in intestinal microbial communities in aquatic animals from an aquaculture area[J] . Journal of Marine Science and Engineering,2021,9(2):104. [52] FRAUNE S, ZIMMER M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts[J] . Environmental Microbiology,2008,10(10):2497-2504. [53] CAHENZLI J, KÖLLER Y, WYSS M, et al. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels[J] . Cell Host & Microbe,2013,14(5):559-570. [54] KASHINSKAYA E N, SUHANOVA E V, SOLOV'EV M M, et al. Diversity of microbial communities of the intestinal mucosa and intestinal contents of fish from Lake Chany (Western Siberia)[J] . Inland Water Biology,2014,7(2):172-177. [55] MORGAN X C, TICKLE T L, SOKOL H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment[J] . Genome Biology,2012,13(9):R79. [56] TILG H, KASER A. Gut microbiome, obesity, and metabolic dysfunction[J] . Journal of Clinical Investigation,2011,121(6):2126-2132.