Identification of Four Strains of Marine Red Yeasts and Effect of Strain CM6 on Growth of Juvenile Sea Cucumber
YE Bo, ZHAO Zhenjun, LIU Danni, WANG Xuda, YANG Boxue, DONG Ying, WANG Xiaoyue, LIU Guilin, ZHANG Qian, LI Shilei
Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
Abstract:In order to obtain the marine red yeast suitable for cultivation of sea cucumber Apostichopus japonicus, the morphological observation, biochemical analysis, molecular biology identification, determination of metabolite content and the effect of feeding the sea cucumber were carried out. The juvenile sea cucumber with body weight of (0.81±0.02) g were reared in a 720 mm×490 mm×380 mm aquarium at density of 50 individuals and fed the basic diet with a concentration of 107 cfu/g suspension CM6 yeast (test group), the basic diet containing marine red yeast CICC31029 (positive control group) and only the basic diet. The results showed that these strains of yeasts were belonged to Rotorua mucilaginosa, the strain CM6 exhibiting the best growth performance and the maximal contents of vitamin E, carotenoids and astaxanthin. By the 5th day of culture, the sea cucumber in the test group had 2.8 times higher biomass than those in the control group, and 22.3% and 71.6% higher contents of vitamin E and astaxanthin than those in the blank control group and positive control group, respectively. There were significant increase in specific growth rate and digestive enzyme activities in the test group and positive control group than those in the blank control group (P<0.05). Meanwhile, different qualities of Rotorua mucilaginosa had different effects on the growth performance of juvenile sea cucumber. The increase in specific growth rate by 25.7% and in the activities of amylase and trypsin in the intestines to some extent were observed in the juvenile sea cucumber in the test group compared with the positive control group, which might be involved in CM6 containing more active metabolites in the test group. The findings indicate that addition of an appropriate amount of yeast CM6 to the feed leads to increase the digestive enzyme activity and specific growth rate of juvenile sea cucumber.
叶博, 赵振军, 刘丹妮, 王旭达, 杨博学, 董颖, 王笑月, 刘桂林, 张乾, 李石磊. 海洋红酵母的鉴定筛选及CM6菌株对仿刺参幼参生长的影响[J]. 水产科学, 2025, 44(3): 375-384.
YE Bo, ZHAO Zhenjun, LIU Danni, WANG Xuda, YANG Boxue, DONG Ying, WANG Xiaoyue, LIU Guilin, ZHANG Qian, LI Shilei. Identification of Four Strains of Marine Red Yeasts and Effect of Strain CM6 on Growth of Juvenile Sea Cucumber. Fisheries Science, 2025, 44(3): 375-384.
[1] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2022中国渔业统计年鉴[M].北京:中国农业出版社,2022:50. [2] 张琴.刺参(Apostichopus japonicus selenka)高效免疫增强剂的筛选与应用[D].青岛:中国海洋大学,2010. [3] 吴梅秀.中草药在水产养殖业中的应用前景[J].畜牧兽医杂志,2008,27(2):64-65. [4] 唐胜球,董小英,邹晓庭.饲用酸性蛋白酶研究及其应用[J].饲料广角,2002(9):19-21. [5] WANG A R, RAN C, WANG Y B, et al. Use of probiotics in aquaculture of China—a review of the past decade[J]. Fish & Shellfish Immunology,2019,86:734-755. [6] YANG Z P, SUN J M, XU Z, et al. Beneficial effects of Metschnikowia sp. C14 on growth and intestinal digestive enzymes of juvenile sea cucumber Apostichopus japonicus[J]. Animal Feed Science and Technology,2014,197:142-147. [7] PARK P K, CHO D H, KIM E Y, et al. Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design[J]. World Journal of Microbiology and Biotechnology,2005,21(4):429-434. [8] 叶伟庆,吴园园,高上吉,等.4株海洋红酵母分离鉴定及其代谢产物分析[J].热带作物学报,2013,34(10):2046-2050. [9] KUTTY S N,PHILIP R. Marine yeasts—a review[J]. Yeast,2008,25(7):465-483. [10] 宁为民,温崇庆,黄雪敏,等.胶红酵母分离鉴定及其对凡纳滨对虾幼体存活和变态的影响[J].水产科学,2021,40(1):37-45. [11] 张瑞玲,牛思佳,张红娟,等.红鱼粉饲料中添加海洋红酵母对大菱鲆生长性能的影响[J].水产科学,2014,33(10):616-620. [12] 郭静文,陈山多,冯雨薇,等.饲料中添加海洋红酵母对宝石鲈生长性能的影响[J].饲料工业,2020,41(10):44-49. [13] 包鹏云,李璐瑶,徐哲,等.海洋红酵母H26对刺参幼参生长、免疫指标和肠道菌群的影响[J].大连海洋大学学报,2019,34(5):615-622. [14] 巴尼特J A, 佩恩R W, 亚罗D,等.酵母菌的特征与鉴定手册[M].胡瑞卿,译.青岛:青岛海洋大学出版社,1991:20-24. [15] KOPSAHELIS N, NISIOTOU A, KOURKOUTAS Y, et al. Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range[J]. Bioresource Technology,2009,100(20):4854-4862. [16] TAMURA K, STECHER G, PETERSON D, et al. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution,2013,30(12):2725-2729. [17] 赵留群.饵料中添加海洋红酵母对幼参生长及免疫力的影响[D].大连:大连工业大学,2014. [18] 张坤.饵料中添加胶红酵母对刺参生长、免疫和消化能力的影响[D].大连:大连工业大学,2016. [19] 王旭达,关晓燕,王鉴,等.地衣芽孢杆菌对仿刺参生长、消化和免疫功能的影响[J].水产科学,2021,40(2):151-158. [20] 李石磊,木云雷,滕炜鸣,等.四种因子对仿刺参幼参生长的影响[J].水产科学,2016,35(1):21-26. [21] 王际英,李宝山,张德瑞,等.饲料中添加精氨酸对仿刺参幼参生长、免疫能力及消化酶活力的影响[J].水产学报,2015,39(3):410-420. [22] 安红红,张华威,宫向红,等.喹烯酮对刺参幼参生长、非特异性免疫及抗应激能力的影响[J].中国海洋大学学报(自然科学版),2015,45(3):67-72. [23] 王振刚,赵诗文,王茂林,等.海洋红酵母菌在水产养殖上的应用[J].科学养鱼,2023(3):71-73. [24] NAGAHAMA T, HAMAMOTO M, NAKASE T, et al. Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean[J]. Antonie Van Leeuwenhoek,2001,80(2):101-110. [25] 刘秀莲,王宇光.海洋红酵母的研究进展[J].生物技术通讯,2008,19(2):293-295. [26] 范秀英,郭雪娜,傅秀辉,等.高生物量富硒酵母的选育及培养条件初步优化[J].生物工程学报,2003,19(6):720-724. [27] 夏冬梅.胶红酵母对凡纳滨对虾、罗非鱼、卵形鲳鲹生长、消化酶活力和免疫的影响[D].上海:上海海洋大学,2014. [28] 王吉桥,樊莹莹,徐振祥,等.饲料中β-胡萝卜素和虾青素添加量对仿刺参幼参生长及抗氧化能力的影响[J].大连海洋大学学报,2012,27(3):215-220. [29] 王吉桥,樊莹莹,姜玉声,等.在含等量维生素E饲料中添加β-胡萝卜素和虾青素对仿刺参幼参抗应激能力的影响[J].水产学杂志,2013,26(2):29-34. [30] 崔龙波,董志宁,陆瑶华.仿刺参消化系统的组织学和组织化学研究[J].动物学杂志,2000,35(6):2-4. [31] 杨志平,徐哲,周倩,等.饵料中添加海洋红酵母(Rhodotorula sp.)C11对幼参消化酶及免疫反应的影响[J].渔业科学进展,2015,36(6):107-112. [32] BROWN M R, BARRETT S M, VOLKMAN J K, et al. Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture[J]. Aquaculture,1996,143(3/4):341-360. [33] 张旭,唐瞻杨,黄凯,等.维生素E对尼罗罗非鱼生长和性腺发育影响的研究[J].水产科学,2020,39(6):887-893. [34] HAKIM Y, UNI Z, HULATA G, et al. Relationship between intestinal brush border enzymatic activity and growth rate in tilapias fed diets containing 30% or 48% protein[J]. Aquaculture,2006,257(1/2/3/4):420-428. [35] AMBATI R R, PHANG S M, RAVI S, et al. Astaxanthin:sources, extraction, stability, biological activities and its commercial applications—a review[J]. Marine Drugs,2014,12(1):128-152. [36] QIN K Q, LI S F, WU S J, et al. Dietary astaxanthin supplementation improves the growth performance, immune response, and immunity-related gene expression of sea cucumber (Apostichopus japonicas)[J]. Aquaculture International,2024,32(2):1235-1246.