Effects of Chronic Ammonia Nitrogen Stress on Growth, Intestinal Digestive Enzyme Activity and Structure of Blunt Snout Bream Megalobrama amblycephala
WANG Canli, DAI Mengyang, WANG Qian, XIONG Xinyu, ZHANG Han, WANG Yifan, YE Wenhui, WANG Hengjie, YUAN Xiangyang
Biological Manufacturing Institute of Modern Food Resources, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
Abstract:In order to investigate the effects of chronic ammonia nitrogen stress on growth, and intestinal enzymes activity and histological structure of blunt snout bream, Megalobrama amblycephala, blunt snout bream with body weight of (6.55±0.24) g was reared in a 120 cm height × 80 cm diameter tank, and exposed to aerated tap water (control group G0), 6.82 mg/L ammonium chloride (G1) (10% 96 h LC50) and 13.64 mg/L ammonium chloride (G2) (20% 96 h LC50) at 26—27 ℃ for 4 weeks. At the end of the experiment, enzyme activity analysis, transmission micro-electron microscopy and PCR technology were conducted to analyze the intestinal enzyme activity and histological structure characteristics of the test fish. The results showed that the median lethal concentration LC50 of ammonia nitrogen solution at 96 h was 68.18 mg/L for blunt snout bream. The final body weight, survival rate, weight gain rate, specific growth rate, and activities of protease, lipase, amylase, Na+/K+-ATPase, and γ-GT were shown to be significantly higher in the fish in G0 group than those in G1 and G2 groups (P<0.05). There was significantly higher intestinal microvillus length in blunt snout bream in G0 than those in G1 and G2 groups (P<0.05). Chronic ammonia nitrogen stress led to down-regulated relative expression levels of Claudin-3c, Claudin-7, Occludin and ZO-1 genes compared to those in G0 group, and to up-regulated relative expression levels of TNF-a, IL-1B and IL-6 (P<0.05). In conclusion, chronic ammonia nitrogen stress inhibited the growth, and decreased digestive and absorptive function of blunt snout bream.
[1]TORANZO A E, MAGARIÑOS B, ROMALDE J L. A review of the main bacterial fish diseases in mariculture systems[J]. Aquaculture,2005,246(1/2/3/4):37-61. [2]ARMSTRONG D A,CHIPPENDALE D, KNIGHT A W, et al. Interaction of ionized and un-ionized ammonia on short-term survival and growth of prawn larvae, Macrobrachiumrosenbergii[J]. The Biological Bulletin,1978,154(1):15-31. [3]ZHANG Y L, SHANG Z H, WANG G Y,et al. Effects of ammonia and aerial exposure on hepatic antioxidant capacity of Paramisgurnus dabryanus[J]. Journal of Fishery Sciences of China, 2021, 28(2):176-185. [4]肖炜,李大宇,徐杨,等. 慢性氨氮胁迫对吉富罗非鱼幼鱼生长、免疫及代谢的影响[J].南方水产科学,2015,11(4):81-87. [5]王梦杰,马本贺,王玮欣,等.慢性氨氮胁迫对台湾泥鳅幼鱼生长、免疫及组织结构的影响[J].水生生物学报,2021,45(2):267-274. [6]黄勇,戴习林.氨氮慢性胁迫对凡纳滨对虾肝胰腺氨代谢相关指标及细胞凋亡的影响[J].南方农业学报,2022,53(10):2804-2811. [7]SITJÀ-BOBADILLA A, ALVAREZ-PELLITERO P. Experimental transmission of Sparicotylechrysophrii (Monogenea:polyopisthocotylea) to gilthead seabream (Sparus aurata) and histopathology of the infection[J]. Folia Parasitologica,2009,56(2):143-151. [8]SUN Y Y, YU H X, ZHANG J F, et al. Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure[J]. Chemosphere,2006,63(8):1319-1327. [9]ZHANG Y L, SHANG Z H, WANG G Y, et al. High concentrations of environmental ammonia induced changes in large-scale loach (Paramisgurnus dabryanus) immunity[J]. Ecology and Evolution,2021,11(13):8614-8622. [10]JIA R, LIU B L, HAN C, et al. Effects of ammonia exposure on stress and immune response in juvenile turbot (Scophthalmus maximus)[J]. Aquaculture Research,2017,48(6):3149-3162. [11]蒋玫,李磊,沈新强,等.慢性氨氮胁迫对鲻鱼(Mugil cephalus)幼鱼组织细胞免疫指标的影响研究[J].海洋与湖沼,2014,45(3):529-535. [12]胡毅,黄云,钟蕾,等.氨氮胁迫对青鱼幼鱼鳃丝Na+/K+-ATP酶、组织结构及血清部分生理生化指标的影响[J].水产学报,2012,36(4):538-545. [13]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2023中国渔业统计年鉴[M].北京:中国农业出版社,2023. [14]CAI L S, WANG L, SONG K, et al.Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress[J]. Aquaculture,2020,516:734615. [15]CUPP-ENYARD C. Sigma′s non-specific protease activity assay - casein as a substrate[J]. Journal of Visualized Experiments,2008(19):e899. [16]FURNÉ M, HIDALGO M C, LÓPEZ A, et al. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study[J]. Aquaculture,2005,250(1/2):391-398. [17]WENG C F, CHIANG C C, GONG H Y, et al. Acute changes in gill Na+-K+-ATPase and creatine kinase in response to salinity changes in the euryhaline teleost, tilapia (Oreochromis mossambicus)[J]. Physiological and Biochemical Zoology,2002,75(1):29-36. [18]MCCORMICK S D. Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity[J]. Canadian Journal of Fisheries and Aquatic Sciences,1993,50(3):656-658. [19]ENGSTAD R E, ROBERTSEN B, FRIVOLD E. Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood[J]. Fish & Shellfish Immunology,1992,2(4):287-297. [20]ROSALKI S B, RAU D, LEHMANN D, et al. Gamma-glutamyl transpeptidase in chronic alcoholism[J]. Lancet,1970,2(7683):1139. [21]唐首杰,刘辛宇,吴太淳,等.慢性氨氮胁迫对“新吉富” 罗非鱼幼鱼生长及血清生化指标的影响[J].水产科学,2019,38(6):741-748. [22]PAUST L O, FOSS A, IMSLAND A K. Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L.)[J]. Aquaculture,2011,315(3/4):400-406. [23]PENG R B, WANG P S, LE K X, et al. Acute and chronic effects of ammonia on juvenile cuttlefish, Sepia pharaonis[J]. Journal of the World Aquaculture Society,2017,48(4):602-610. [24]CHEN J C, KOU Y Z. Effects of ammonia on growth and molting of Penaeus japonicus juveniles[J]. Aquaculture, 1992,104(3/4):249-260. [25]YUAN X Y, JIANG G Z, CHENG H H, et al. An evaluation of replacing fish meal with cottonseed meal protein hydrolysate in diet for juvenile blunt snout bream (Megalobrama amblycephala):growth, antioxidant, innate immunity and disease resistance[J]. Aquaculture Nutrition,2019,25(6):1334-1344. [26]SUZER C, KAMACI H O, ÇOBAN D, et al. Digestive enzyme activity of the red porgy (Pagrus pagrus, L. ) during larval development under culture conditions[J]. Aquaculture Research,2007,38(16):1778-1785. [27]张武肖,孙盛明,戈贤平,等.急性氨氮胁迫及毒后恢复对团头鲂幼鱼鳃、肝和肾组织结构的影响[J].水产学报,2015,39(2):233-244. [28]徐武杰,潘鲁青,岳峰,等.氨氮胁迫对三疣梭子蟹消化酶活力的影响[J].中国海洋大学学报(自然科学版),2011,41(6):35-40. [29]RODRIGUES R V, SCHWARZ M H, DELBOS B C, et al. Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum[J]. Aquaculture,2007,271(1/2/3/4):553-557. [30]魏孟申,郑涛,路思琪,等.氨氮胁迫对大口黑鲈幼鱼组织结构、酶活及肠道微生物的影响[J].水生生物学报,2024,48(1):10-22. [31]ZHAO B, FENG L, LIU Y, et al. Effects of dietary histidine levels on growth performance, body composition and intestinal enzymes activities of juvenile Jian carp (Cyprinus carpio var. jian)[J]. Aquaculture Nutrition,2012,18(2):220-232. [32]TENGJAROENKUL B, SMITH B J, CACECI T, et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L[J]. Aquaculture,2000,182(3/4):317-327. [33]SELLE P H, RAVINDRAN V, RAVINDRAN G, et al. Effects of dietary lysine and microbial phytase on growth performance and nutrient utilisation of broiler chickens[J]. Asian-Australasian Journal of Animal Sciences,2007,20(7):1100-1107. [34]RIBEIRO L, ZAMBONINO-INFANTE J L, CAHU C, et al. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858[J]. Aquaculture,1999,179(1/2/3/4):465-473. [35]OGAWA M, SHIOZAWA M, HIRAOKA Y, et al. Immunohistochemical study of localization of γ-glutamyl transpeptidase in the rat brain[J]. Tissue and Cell,1998,30(6):597-601. [36]YUAN X Y, JIANG G Z, WANG C C, et al. Effects of partial replacement of fish meal by yeast hydrolysate on antioxidant capability, intestinal morphology, and inflammation-related gene expression of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Fish Physiology and Biochemistry,2019,45(1):187-197. [37]CEREZUELA R, FUMANAL M, TAPIA-PANIAGUA S T, et al. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L. ) fed dietary probiotics and microalgae[J]. Cell and Tissue Research,2012,350(3):477-489. [38]WANG S D, MENG F X, LIU Y, et al. Exogenous inositol ameliorates the effects of acute ammonia toxicity on intestinal oxidative status, immune response, apoptosis, and tight junction barriers of great blue-spotted mudskippers (Boleophthalmus pectinirostris)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2021,240:108911. [39]DIMITROGLOU A, MERRIFIELD D L, SPRING P, et al. Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata)[J]. Aquaculture,2010,300(1/2/3/4):182-188. [40]ZHU X Z, LI M, LIU B. Acute ammonia poisoning in dolly Varden char (Salvelinus malma) and effect of methionine sulfoximine[J]. Fish & Shellfish Immunology,2020,101:198-204. [41]JIA R, CAO L P, DU J L, et al. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio)[J]. Aquatic Toxicology,2014,152:11-19.