Molecular Cloning and Expression of AjCaspase3-p Gene in Sea Cucumber Apostichopus japonicus
WANG Luyao1,2, ZHANG Chanchan2, ZHANG Xiaojing2, HAI Hangyu2, MA Deyou1,2
1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; 2. Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian 116023, China
Abstract:In order to explore the biological function of Caspase-3 gene as the crucial executioner protein in metamorphosis of sea cucumbers Apostichopus japonicus, a full-length cDNA of caspase-3 gene was cloned by cDNA end rapid amplification (RACE) technology, and the characteristics were analyzed. The expression levels of the gene were examined in various tissues and different development stages of thelarvae in the sea cucumber by RT-qPCR. Meanwhile, its spatial distribution was localized during metamorphosis process by the whole-amount in situ hybridization method. The results showed that the cloned Caspase-3 cDNA had full length of 2007 bp encoding 508 amino acids. Blastp comparison revealed that the gene had the most similarity with the putative caspase-3 gene (PIK46501.1) fromthe sea cucumbergenome designed as AjCaspase3-p. Bioinformatics analysis indicated that AjCaspase3-p contained the CASc domain unique to the Caspase family and a conserved QACRG cysteine active site. Phylogenetic analysis showed that AjCaspase3-p had high homology with Caspase-3 of other species belonged to marine invertebrates. There was a constitutive expression in detected tissues, with the maximal expression level in coelomocytes (P<0.05), suggesting that AjCaspase3-p might be involved in host immune defense. The AjCaspase3-p mRNA expression level was also increased at late auricularia stage with peak at juvenile stage. Furthermore, spatial localization results showed that the expression positive reactivity of this gene gradually became obvious during metamorphosis, and was strongly expressed in tentacles and intestines at juvenils stage, indicating that the AjCaspase3-p might maintain homeostasis to ensure metamorphosis of the sea cucumber larvae.
[1]ELMORE S. Apoptosis:a review of programmed cell death[J]. Toxicologic Pathology, 2007, 35(4):495-516. [2]MEIER P, FINCH A, EVAN G. Apoptosis in development[J]. Nature, 2000, 407(6805):796-801. [3]和四梅,张丽莉,王艺磊,等.Caspase细胞凋亡通路及其在水生无脊椎动物的研究进展[J].生物技术通报,2013,29(9):54-61. [4]NICHOLSON D W. Caspase structure, proteolytic substrates, and function during apoptotic cell death[J]. Cell Death and Differentiation, 1999, 6(11):1028-1042. [5]赵瑞杰,李引乾,王会,等.Caspase家族与细胞凋亡的关系[J].中国畜牧杂志,2010,46(17):73-78. [6]PORTER A G, JÄNICKE R U. Emerging roles of caspase-3 in apoptosis[J]. Cell Death and Differentiation,1999,6(2):99-104. [7]杨涛,费振海,钟兴明.Caspase家族与细胞凋亡的研究进展[J].浙江医学,2018,40(18):2083-2087. [8]卢锡琴,张丽莉,黄世玉,等.杂色鲍caspase-3基因的克隆及其在发育、弧菌感染、高温和缺氧应激中的表达分析[J].大连海洋大学学报,2022,37(3):411-419. [9]SHAO Y N, LI C H, ZHANG W W, et al. Molecular cloning and characterization of four caspases members in Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2016, 55:203-211. [10]房晓宸,卢金昭,梁海鹰,等.马氏珠母贝Caspase-3基因克隆和组织表达分析[J].基因组学与应用生物学,2021,40(3):970-979. [11]王国栋,张丽莉,王艺磊.鲍幼虫变态分子机制的研究进展[J].集美大学学报(自然科学版),2012,17(2):101-108. [12]DEGNAN B M, DEGNAN S M, MORSE D E. Muscle-specific regulation of tropomyosin gene expression and myofibrillogenesis differs among muscle systems examined at metamorphosis of the gastropod Haliotis rufescens[J]. Development Genes and Evolution,1997,206(7):464-471. [13]FRETTER V. Metamorphic changes in the velar musculature, head and shell of some prosobranch veligers[J]. Journal of the Marine Biological Association of the United Kingdom,1972,52(1):161-177. [14]SONG H, SUN L Y, YU Z L, et al. Metabolomic analysis of competent larvae and juvenile veined rapa whelks (Rapana venosa)[J]. Marine Biology, 2016, 163(6):145. [15]房晓宸.马氏珠母贝内源性细胞凋亡通路关键基因的克隆及功能研究[D].湛江:广东海洋大学,2021. [16]SONG H, QI L, ZHANG T, et al. Understanding microRNA regulation involved in the metamorphosis of the veined rapa whelk (Rapana venosa)[J]. G3,2017,7(12):3999-4008. [17]YANG B Y, LI L L, PU F, et al. Molecular cloning of two molluscan caspases and gene functional analysis during Crassostrea angulata (Fujian oyster) larval metamorphosis[J]. Molecular Biology Reports, 2015, 42(5):963-975. [18]QU T, HUANG B Y, ZHANG L L, et al. Identification and functional characterization of two executioner caspases in Crassostrea gigas[J]. PLoS One,2014,9(2):e89040. [19]王晓梅,刘保忠,相建海.文蛤(Meretrix meretrix)幼虫发育过程中细胞凋亡和Caspase功能分析[J].海洋与湖沼,2009,40(2):181-186. [20]SEIPP S, WITTIG K, STIENING B, et al. Metamorphosis of Hydractinia echinata (Cnidaria) is caspase-dependent[J]. The International Journal of Developmental Biology,2006,50(1):63-70. [21]张涛.海洋无脊椎动物幼虫附着变态研究进展 Ⅱ:附着变态模型及人工诱导物在经济贝类苗种生产中的应用[J].海洋科学,2000,24(2):38-41. [22]韦秀梅,杨顶珑,王圣,等.氯化钾诱导仿刺参(Apostichopus japonicus)幼虫附着变态的研究[J].海洋与湖沼,2015,46(2):389-395. [23]张永胜,董双林,王芳,等.光照对刺参幼体存活、生长、发育和附着变态的影响[J].海洋湖沼通报,2014,36(1):36-41. [24]DOLMATOV I Y, GINANOVA T T, FROLOVA L T. Metamorphosis and definitive organogenesis in the holothurian Apostichopus japonicus[J]. Zoomorphology,2016,135(2):173-188. [25]马得友,于莲莲,林威港,等.刺参Wnt9基因克隆、组织分布及在胚胎发育中的表达分析[J].大连海洋大学学报,2022,37(3):394-402. [26]张晓田,宋天保.Caspase-3与细胞凋亡的研究[J].医学综述,2002,8(11):621-623. [27]KUMAR S. Caspase function in programmed cell death[J]. Cell Death and Differentiation, 2007, 14(1):32-43. [28]LI M Y, DING Y, MU Y N, et al. Molecular cloning and characterization of caspase-3 in large yellow croaker (Pseudosciaena crocea)[J]. Fish & Shellfish Immunology,2011,30(3):910-916. [29]邬皓晨,陈勇军,徐易尘,等.Caspase-1在炎症及程序性细胞死亡过程中的作用[J].中国细胞生物学学报,2011,33(2):182-189. [30]WALSH J G, CULLEN S P, SHERIDAN C, et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(35):12815-12819. [31]EARNSHAW W C, MARTINS L M, KAUFMANN S H. Mammalian caspases:structure, activation, substrates, and functions during apoptosis[J]. Annual Review of Biochemistry,1999,68:383-424. [32]WANG P H, WAN D H, CHEN Y G, et al. Characterization of four novel caspases from Litopenaeus vannamei (Lvcaspase2-5) and their role in WSSV infection through dsRNA-mediated gene silencing[J]. PLoS One,2013,8(12):e80418. [33]QIN Y P, ZHANG Y H, LI X Y, et al. Characterization and functional analysis of a caspase 3 gene:evidence that ChCas 3 participates in the regulation of apoptosis in Crassostrea hongkongensis[J]. Fish & Shellfish Immunology,2020,98:122-129. [34]SMITH L C, GHOSH J, BUCKLEY K M, et al. Echinoderm immunity[M]//SÖDERHÄLL K.Invertebrate Immunity. Boston:Springer US,2010:260-301. [35]WANG Z H, SHAO Y N, LI C H, et al. A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis[J]. Fish & Shellfish Immunology,2016,52:103-110. [36]和四梅.杂色鲍caspase细胞凋亡通路在应激和发育中的作用[D].厦门:集美大学,2013. [37]LI S, LI J F, PENG W J, et al. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus)[J]. BMC Veterinary Research,2019,15(1):20. [38]吴芳丽,王月,尚跃勇,等.水生无脊椎动物血淋巴细胞分类及免疫研究进展[J].大连海洋大学学报,2016,31(6):696-704. [39]吴晓鹏,黄敏伟,陈晓瑛,等.玉足海参变态附着阶段转录组分析[J].南方水产科学,2023,19(6):84-96. [40]PASQUIER D D, RINCHEVAL V, SINZELLE L, et al. Developmental cell death during Xenopus metamorphosis involves BID cleavage and caspase 2 and 8 activation[J]. Developmental Dynamics,2006,235(8):2083-2094. [41]KRASOVEC G, ROBINE K, QUÉINNEC E, et al. Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis[J]. Developmental Biology,2019,448(2):237-246. [42]刘志显,李嘉政,梁邻利,等.厚壳贻贝McCaspase 3-4基因的克隆及其在幼虫变态中的作用[J].水生生物学报,2022,46(8):1168-1176.