Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
Abstract:To investigate the intestinal evacuation characteristics of juvenile Rhinogobio ventralis and to establish an optimal mathematical model for determining the most suitable feeding frequency, the proportions of intestinal wet and dry contents were observed in the juvenile R. ventralis with body weight (11.74±0.45) g satiately fed and anaesthetize by MS-222 at 0, 1, 2, 3, 4, 6, 8, 10 and 12 h after feeding at 19—20 ℃. The intestinal emptying time was estimated in R. ventralis at various emptying degrees of 0% (immediately satiated feeding), 25%, 50%, 75% and 99% when the activities of amylase, chymotrypsin and lipase were measured to investigate the changes in content quality and intestinal digestive enzyme activity in the process of intestinal emptying, and the curve fitting effect of linear model, exponential model and square root model on the emptying of intestinal contents. It was found that the wet and dry weight of the intestinal contents of the juvenile was significantly decreased over time, with the initial slow reduction, followed by a rapid decrease, and then leveling off. The square root model was shown to be the most suitable model for simulating the wet and dry weight evacuation processes of the intestinal contents in juvenile R. ventralis, with the wet weight intestinal evacuation rate of 0.802 g/h, and 80% intestinal evacuation time at 11.99 hours, and with the dry weight intestinal evacuation rate of 0.801 g/h, and the 80% intestinal evacuation time at 11.38 hours. During the intestinal evacuation process, the activities of amylase, chymotrypsin, and lipase in the intestine were first increased and then decreased. Based on these findings, it is recommended that the optimal feeding interval for juvenile R. ventralis be 12 hours, with feeding frequency of twice a day.
[1] GAO X Q, WANG X, WANG X Y, et al. Effects of different feeding frequencies on the growth, plasma biochemical parameters, stress status, and gastric evacuation of juvenile tiger puffer fish (Takifugu rubripes)[J]. Aquaculture,2022,548:737718. [2] MELO N, KONIG I F M, RÍOS-DURÁN M G, et al. Feeding frequency has a determinant role in growth performance, skeletal deformities, and body composition in the Mexican pike silverside (Chirostoma estor), an agastric short-intestine fish (Teleostei:Atheriniformes)[J]. Aquaculture,2023,562:738766. [3] 王永帅,柏杨,孙凯,等.不同投喂频率对脊尾白虾生物钟基因表达、生长及肌肉成分组成的影响[J]. 中国水产科学,2023,30(8):965-974. [4] 曾令清,李凤杰,曹振东,等.南方鲇幼鱼的胃排空特征及其数学模型[J]. 水产学报,2011,35(2):231-237. [5] DÜRRANI Ö, SEYHAN K. Gastric evacuation rates in farmed brook trout subjected to a range of feeding conditions fed commercial pellets[J]. Aquaculture,2019,513:734390. [6] 李明月,高云红,万金铭,等.黄条鰤幼鱼胃排空特征、消化酶活性及摄食调控基因表达[J]. 水产学报,2022,46(6):906-916. [7] RICHE M, HALEY D I, OETKER M, et al. Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L. )[J]. Aquaculture,2004,234(1/2/3/4):657-673. [8] 黄铭,周演根,陈薛伟杰,等.两种规格虹鳟胃排空模型和投喂频率的研究[J]. 中国海洋大学学报(自然科学版),2020,50(12):33-39. [9] 高云红,景琦琦,黄滨,等.云龙石斑鱼胃排空特征和摄食消化特性研究[J]. 渔业科学进展,2021,42(1):92-99. [10] ANDERSEN N G. A gastric evacuation model for three predatory gadoids and implications of using pooled field data of stomach contents to estimate food rations[J]. Journal of Fish Biology, 2001,59(5):1198-1217. [11] DÜRRANI Ö, SEYHAN K. Parameterizing an expanded square root model to account for the effects of temperature, meal size, and body size on gastric evacuation rate in farmed brown trout[J]. Aquaculture Research,2021,52(10):4849-4857. [12] DÜRRANI Ö. Temperature, meal size and body size effects on the gastric evacuation of rainbow trout:modelling optimum and upper thermal limits[J]. Journal of Fish Biology,2022,100(6):1388-1398. [13] LIU R X, ZHOU Y G, LI Z K, et al. Evaluation of the effects of temperature on gastric evacuation and the associated mathematical models in different sizes steelhead trout (Oncorhynchus mykiss)[J]. Aquaculture,2022,549:737815. [14] 黄颖颖,龙治海,周波,等.长薄鳅幼鱼摄食节律及其胃排空模型的研究[J]. 江西农业学报,2022,34(2):171-177. [15] 谢敏,向建国,郭宵峰.鳡肠道排空速率的测定[J]. 科学养鱼,2015(10):50. [16] GROVE D J, CRAWFORD C. Correlation between digestion rate and feeding frequency in the stomachless teleost, Blennius pholis L.[J]. Journal of Fish Biology,1980,16(3):235-247. [17] 段辛斌,田辉伍,高天珩,等.金沙江一期工程蓄水前长江上游产漂流性卵鱼类产卵场现状[J]. 长江流域资源与环境,2015,24(8):1358-1365. [18] 张登成,樊皓,王孟,等.金沙江乌东德水电站生态调度目标鱼类筛选研究[J]. 水生态学杂志,2022,43(5):73-82. [19] 管敏,曲焕韬,胡美洪,等.长鳍吻鮈人工繁育的初步研究[J]. 水产科学,2015,34(5):294-299. [20] 朱永久,吴兴兵,何勇凤,等.基于循环水养殖系统的长鳍吻鮈亲鱼培育、催产和孵化技术初探[J]. 淡水渔业,2018,48(3):101-106. [21] 管敏,胡美宏,肖衎,等.一种长鳍吻鮈苗种养殖方法:CN104054611B[P]. 2015-11-18. [22] BASCINAR N S, BASCINAR N, KHAN U, et al. Effects of meal and body sizes on gastric evacuation rate in brook trout Salvelinus fontinalis (Mitchill, 1814) fed commercial pellets in group feeding[J]. Indian Journal of Fisheries,2017,64(3):50-54. [23] 管敏,张德志,饶军,等.饱食投喂频率对子二代中华鲟稚鱼生长及胃肠排空的影响[J]. 淡水渔业,2019,49(4):90-97. [24] 曲焕韬,廖建新,代伟,等.厚颌鲂幼鱼的胃排空特征及其数学模型研究[J]. 水产科学,2021,40(4):583-588. [25] 余方平,许文军,薛利建,等.美国红鱼的胃排空率[J]. 海洋渔业,2007,29(1):49-52. [26] 丛湘明,李向,华雪铭,等.大口黑鲈摄食含小肽饲料后的胃排空特征和消化酶活性变化[J]. 动物营养学报,2022,34(7):4642-4656. [27] 刘荣欣,周演根,李哲坤,等.两种规格大西洋鲑胃排空特征及其模型分析[J]. 中国水产科学,2022,29(7):1044-1051. [28] 郭浩宇,张秀梅,张宗航,等.许氏平鲉仔、稚鱼的摄食特性及幼鱼胃排空率[J]. 水产学报,2017,41(2):285-296. [29] 朱伟星,华雪铭,钟国防,等.斑点叉尾鮰对全植物蛋白饲料的胃排空及消化道内容物特性研究[J]. 水产学报,2015,39(4):529-538. [30] 李可贵,曹振东,付世建.鲇鱼幼鱼的胃排空率及其模型分析[J]. 重庆师范大学学报(自然科学版),2009,26(3):8-11. [31] 孙晓锋,冯健,陈江虹,等.投喂频率对尼罗系吉富罗非鱼幼鱼胃排空、生长性能和体组成的影响[J]. 水产学报,2011,35(11):1677-1683. [32] VERA L M, DE PEDRO N, GÓMEZ-MILÁN E, et al. Feeding entrainment of locomotor activity rhythms, digestive enzymes and neuroendocrine factors in goldfish[J]. Physiology & Behavior,2007,90(2/3):518-524. [33] 黄瑾,熊邦喜,陈洁,等.鱼类消化酶活性与体长、体重和水质的相关性研究[J]. 水生态学杂志,2012,33(2):121-126. [34] 丰超杰,张颖,张永泉,等.急性高温胁迫对黑龙江茴鱼血清生化指标、消化酶、抗氧化酶活性及其基因表达的影响[J]. 淡水渔业,2023,53(6):37-45. [35] 尾崎久雄.鱼类消化生理:下册[M]. 李爱杰,沈宗武,译.上海:上海科学技术出版社,1985:446-447. [36] 施兆鸿,谢明媚,彭士明,等.温度胁迫对银鲳(Pampus argenteus)幼鱼消化酶活性及血清生化指标的影响[J]. 渔业科学进展,2016,37(5):30-37. [37] 翁祖桐.2个养殖水温下罗非鱼食后肠道消化酶活性的动态变化[J]. 渔业研究,2018,40(5):374-379. [38] 杨家威,孙龙生,蔡春光,等.全雄黄颡鱼摄食前后消化酶活性变化规律的研究[J]. 饲料工业,2014,35(8):20-24. [39] 尤宏争.鱼类消化系统及消化酶的研究进展[J]. 河北渔业,2012(3):53-61. [40] 段鹏飞,田永胜,邱弈树,等.金虎石斑鱼和珍珠龙胆石斑鱼幼鱼胃排空特征及消化酶活性[J]. 广东海洋大学学报,2023,43(1):119-126. [41] 陈寅儿,郑学斌,高心明,等.小黄鱼(Larimichthys polyactis)消化道形态与组织学结构特征及其消化酶活性的研究[J]. 海洋与湖沼,2019,50(5):1116-1126.