1. Dalian Ocean University, Dalian 116023, China; 2. Institute of Fishery Engineering, Chinese Academy of Fishery Sciences, Beijing 100141, China; 3. Liaoning Ocean Ranch Engineering Technology Research Center, Dalian 116023, China
Abstract:To investigate the effects of seawater acidification on activities of digestive enzymes and immune enzymes and gene expressions in bastard halibut Paralichthys olivaceus, juvenile bastard halibut with body weight of (2.16±0.34) g were reared in a glass tank (1.0 m×0.7 m×0.7 m) in the Key Laboratory of Northern Marine Aquaculture, Ministry of Agriculture and Rural Affairs, Dalian Ocean University for 49 d under natural light and water temperature of (19.00±1.50) ℃. CO2 was added to the seawater to keep the pH at 7.90, 7.70, 7.50 and 7.30, and natural seawater (pH 8.10) were used as the control group. The activities and genes expression levels of pepsin (PES) and trypsin (TRS) in stomach, lipase (LPS) in intestine, catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (ALP), and total superoxide dismutase (T-SOD) in muscle were determined at the end of the feeding trail. The results showed that the activities of PES, TRS, ACP, ALP, CAT, and T-SOD) were decreased with decreasing pH in Paralichthys olivaceus, with increase in LPS with decreasing pH and without significant differences in the activities of TES, TRS, LPS, ACP, and T-SOD compared to the control group from day 1 to day 14 in pH 7.50 and pH 7.30 groups(P>0.05).There were significantly lower (or higher) activities of the above enzymes than those in the control group from day 35 to day 49 (P<0.05); ALP and CAT activities were significantly lower (or higher) than those in the control group during the experiment (P<0.05). During the experiment, the minimal activities were observed 8.75 U/g in PES, 138.81 U/g in TRS, 0.009 U/g prot in ACP, 0.019 U/g in ALP, and 17.46 U/g in SOD at the 49 day in the pH 7.30 group. The maximal activity (14.534 U/g) of LPS was found in the pH 7.30 group at 49 days. The relative expression levels of digestive genes prss1 and cpa4, as well as immune genes pik3r5 and cxcl8a were found to be decreased in the muscles with decreasing pH, significantly lower than those in the control group from 35 to 49 days (P<0.05), indicating that the digestive enzyme and immune enzyme activities, as well as the expression of digestive and immune genes, of P. olivaceus are significantly affected by high-intensity acidification environment. Therefore, seawater acidification environment will affect the stability of P. olivaceus population in natural sea areas.
[1]SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science,2004,305(5682):367-371. [2]石莉,桂静,吴克勤.海洋酸化及国际研究动态[J].海洋科学进展,2011,29(1):122-128. [3]CALDEIRA K, WICKETT M E. Anthropogenic carbon and ocean pH[J]. Nature,2003,425(6956):365. [4]CALDEIRA K, WICKETT M E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean[J]. Journal of Geophysical Research:Oceans,2005,110(C9):C09S04. [5]ORR J C, FABRY V J, AUMONT O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature,2005,437(7059):681-686. [6]卢梓雅,陈晓琳,黄思敏,等.太平洋牡蛎对海洋酸化响应的分子机制——基于转录组的分析[J].中国农学通报,2023,39(26):137-146. [7]孙珮琦,杨济淞,秦玉雪,等.海水酸化对海洋生物影响的研究进展[J].中南农业科技,2023(9):231-236. [8]MELZNER F, GUTOWSKA M A, LANGENBUCH M, et al. Physiological basis for high CO2 tolerance in marine ectothermic animals:pre-adaptation through lifestyle and ontogeny?[J]. Biogeosciences,2009,6(10):2313-2331. [9]FEDER M E. Physiology and global climate change[J]. Annual Review of Physiology,2010,72:123-125. [10]KONG H, WU F L, JIANG X Y, et al. Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification[J]. Chemosphere,2019,237:124561. [11]KHAN F U, HU M H, KONG H, et al. Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels[J]. Chemosphere,2020,256:127096. [12]MACHADO M, ARENAS F, SVENDSEN J C, et al. Effects of water acidification on Senegalese sole Solea senegalensis health status and metabolic rate:implications for immune responses and energy use[J]. Frontiers in Physiology,2020,11:26. [13]FREITAS R, PIRES A, VELEZ C, et al. Effects of seawater acidification on Diopatra neapolitana (Polychaete, Onuphidae):biochemical and regenerative capacity responses[J]. Ecological Indicators,2016,60:152-161. [14]NARDI A, BENEDETTI M, FATTORINI D, et al. Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber[J]. Aquatic Toxicology,2018,196:53-60. [15]VELEZ C, FIGUEIRA E, SOARES A M V M, et al. The impacts of As accumulation under different pH levels:comparing Ruditapes decussatus and Ruditapes philippinarum biochemical performance[J]. Environmental Research,2016,151:653-662. [16]ZHANG G F, FANG X D, GUO X M, et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature,2012,490(7418):49-54. [17]郭勤单,王有基,吕为群.温度和盐度对褐牙鲆幼鱼渗透生理及抗氧化水平的影响[J].水生生物学报,2014,38(1):58-67. [18]BAAG S, MANDAL S. Combined effects of ocean warming and acidification on marine fish and shellfish:a molecule to ecosystem perspective[J]. Science of the Total Environment,2022,802:149807. [19]GAO K S, BEARDALL J, HÄDER D P, et al. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation[J]. Frontiers in Marine Science,2019,6:322. [20]尹文露,崔东遥,李莹莹,等.中间球海胆丙酮酸激酶(PK)基因克隆及其对海水酸化的响应[J].大连海洋大学学报,2020,35(3):360-367. [21]YAO C W, HUANG W X, LIU Y T, et al. Effects of different marine-based lipid sources on growth performance, activities of digestive enzyme, antioxidant responses, and lipid metabolism of large yellow croaker (Larimichthys crocea) larvae[J]. Aquaculture Nutrition,2022,2022(1):6314978. [22]陈进树.鱼类消化酶研究及存在的问题分析[J].中国科技信息,2009(21):35-36. [23]施兆鸿,谢明媚,彭士明,等.温度胁迫对银鲳(Pampus argenteus)幼鱼消化酶活性及血清生化指标的影响[J].渔业科学进展,2016,37(5):30-37. [24]罗奇,区又君,艾丽,等.温度和pH对条石鲷幼鱼消化酶活力的影响[J].热带海洋学报,2010,29(5):154-158. [25]XU M X, SUN T L, TANG X X, et al. CO2 and HCl-induced seawater acidification impair the ingestion and digestion of blue mussel Mytilus edulis[J]. Chemosphere,2020,240:124821. [26]STUMPP M, WREN J, MELZNER F, et al. CO2 induced seawater acidification impacts sea urchin larval development I:elevated metabolic rates decrease scope for growth and induce developmental delay[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2011,160(3):331-340. [27]刘玲,陈超,李炎璐,等.短期温度胁迫对驼背鲈(♀)×鞍带石斑鱼(♂)杂交子代幼鱼抗氧化及消化酶活性的影响[J].渔业科学进展,2018,39(2):59-66. [28]王婷.酸化条件下球等鞭金藻营养变化对厚壳贻贝的生理生态影响[D].上海:上海海洋大学,2021. [29]徐革锋,陈侠君,杜佳,等.鱼类消化系统的结构、功能及消化酶的分布与特性[J].水产学杂志,2009,22(4):49-55. [30]刘江华,区又君,李加儿,等.温度和pH对驼背鲈消化酶活力的影响[J].中山大学学报(自然科学版),2014,53(3):95-100. [31]张海宾.pH对乌鳢胃、肠、肝胰脏蛋白酶活性的影响[J].水利渔业,2006,26(2):4-5. [32]张弢.公子小丑鱼消化酶的分布和活性及环境因子对成鱼和幼鱼阶段消化酶活性的影响[D].上海:上海海洋大学,2014. [33]杨婳,邢秀苹,黄权,等.温度和pH对黄金鲈消化酶活力的影响[J].西北农林科技大学学报(自然科学版),2014,42(10):1-6. [34]沈文英,胡洪国,潘雅娟.温度和pH值对南美白对虾(Penaeusvannmei)消化酶活性的影响[J].海洋与湖沼,2004,35(6):543-548. [35]ZAMOLODCHIKOVA T S. Serine proteases in immune protection of the small intestine[J]. Biochemistry. Biokhimiia,2013,78(3):213-220. [36]TANCO S, ZHANG X, MORANO C, et al. Characterization of the substrate specificity of human carboxypeptidase A4 and implications for a role in extracellular peptide processing[J]. The Journal of Biological Chemistry,2010,285(24):18385-18396. [37]YANG M J, SONG H, YU Z L, et al. Identification and expression characterization of a novel carboxypeptidase A-like gene (RvCPA) during early developmental stages in the gastropod Rapana venosa (Muricidae)[J]. Aquaculture Reports,2020,17:100360. [38]LEE H G, STUMPP M, YAN J J, et al. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2-induced seawater acidification[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2019,234:87-97. [39]KIM K S, SHIM J H, KIM S. Effects of CO2-induced ocean acidification on the growth of the larval olive flounder Paralichthys olivaceus[J]. Ocean Science Journal,2015,50(2):381-388. [40]申凯.两种免疫增强剂对鲫鱼非特异性免疫效果比较[D].长春:吉林农业大学,2022. [41]李亚南,陈全震,邵健忠,等.鱼类免疫学研究进展[J].动物学研究,1995,16(1):83-94. [42]GIRI S S, SEN S S, JUN J W, et al. Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes[J]. Fish & Shellfish Immunology,2016,54:164-171. [43]骆子怡,王雷,张月星,等.海洋酸化和纳米银胁迫对海蜇幼蛰的生理影响[J].应用海洋学学报,2023,42(1):28-37. [44]祁明亮,朱敏,赵晓祥.DEP、DOP暴露对鲤鱼的酸碱性磷酸酶的影响[J].安全与环境学报,2012,12(2):10-13. [45]杨军,石安静.3种淡水育珠河蚌血细胞类型的研究[J].四川大学学报(自然科学版),2002,39(S1):68-72. [46]ANAN Y, KUNITO T, IKEMOTO T, et al. Elevated concentrations of trace elements in caspian seals (Phoca caspica) found stranded during the mass mortality events in 2000[J]. Archives of Environmental Contamination and Toxicology,2002,42(3):354-362. [47]CERMELJ B, OGRINC N, FAGANELI J. Anoxic mineralization of biogenic debris in near-shore marine sediments (Gulf of Trieste, northern Adriatic)[J]. Science of the Total Environment,2001,266(1/2/3):143-152. [48]KAILASAM M, KANEKO G, OO A K S, et al. Effects of calorie restriction on the expression of manganese superoxide dismutase and catalase under oxidative stress conditions in the rotifer Brachionus plicatilis[J]. Fisheries Science,2011,77(3):403-409. [49]VASYLKIV O Y, KUBRAK O I, STOREY K B, et al. Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole[J]. Pesticide Biochemistry and Physiology,2011,101(1):1-5. [50]HENRIKSEN M M M, KANIA P W, BUCHMANN K, et al. Evaluation of the immune response in rainbow trout fry, Oncorhynchus mykiss (Walbaum), after waterborne exposure to Flavobacterium psychrophilum and/or hydrogen peroxide[J]. Journal of Fish Diseases,2015,38(1):55-66. [51]王妤,庄平,章龙珍,等.盐度对点篮子鱼的存活、生长及抗氧化防御系统的影响[J].水产学报,2011,35(1):66-73. [52]YANG G, ZHANG R, LI X, et al. Picroside Ⅱ could protect the cerebral ischemic injury by reducing the content of free radical and enhancing the activity of antioxidase in rats[J]. Journal of Advances in Biology, 2014,3(2):219-226. [53]潘红春,范杰,王芳芳,等. pH值对日本三角涡虫种群增长、无性生殖及6种酶活力的影响[J].水生生物学报,2008,32(3):339-344. [54]李晨辉,王梦杰,彭艳青,等.海洋酸化对脊尾白虾抗氧化酶活性的影响[J].淮海工学院学报(自然科学版),2018,27(4):78-83. [55]林毅,陈强,周思顺,等.CO2驱动的海水酸化对菲律宾蛤仔组织、免疫和抗氧化酶活及转录水平的影响[J].海洋学报,2024,46(1):88-100. [56]韦晓慧.海洋酸化条件下铜、镉对日本虎斑猛水蚤(Tigriopus japonicus)发育、繁殖和超氧化物歧化酶活性的影响[D].青岛:中国海洋大学,2013. [57]马广智,唐玫,徐军.低pH对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响[J].中国水产科学,2001,8(1):23-25. [58]GARCIA L O, BECKER A G, BERTUZZI T, et al. Oxidative stress parameters in silver catfish (Rhamdia quelen) juveniles infected with Ichthyophthirius multifiliis and maintained at different levels of water pH[J]. Veterinary Parasitology,2011,178(1/2):15-21. [59]许友卿,唐旎,丁兆坤.海水酸化对水生动物主要抗氧化酶的影响及机理[J].水产科学,2016,35(4):453-458. [60]孙敬锋,吴信忠.贝类血细胞及其免疫功能研究进展[J].水生生物学报,2006,30(5):601-607. [61]张凯,王伟瑜,赵丽悦,等.温度对马口鱼幼鱼耗氧率、窒息点及抗氧化能力的影响[J].水产科学,2023,42(1):89-95. [62]丁美丽,林林,李光友,等.有机污染对中国对虾体内外环境影响的研究[J].海洋与湖沼,1997,28(1):7-12. [63]鲁双庆,刘少军,刘红玉,等.Cu2+对黄鳝肝脏保护酶SOD、CAT、GSH-PX活性的影响[J].中国水产科学,2002,9(2):138-141. [64]陈瑶,董炜峰,戴红,等.海洋酸化对日本虎斑猛水蚤抗氧化性指标和繁殖发育的影响[J].生态学杂志,2017,36(1):144-149. [65]CAO R W, LIU Y L, WANG Q, et al. The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas[J]. Fish & Shellfish Immunology,2018,81:456-462. [66]樊庆新.浒苔腐败对褐牙鲆生存环境、肠道微生物及肠转录组影响的研究[D].青岛:青岛大学,2022. [67]KIM E H, SURESH M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation[J]. Frontiers in Immunology,2013,4:20. [68]LIU W, JIANG D D, GONG F Y, et al. miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells[J]. Cell Death & Disease,2020,11(2):93.