Abstract:In order to evaluate the probiotic potential of dominant bacterial strains isolated from intestine of grass carp Ctenopharyngodon idellus using Aeromonas hydrophila as an indicator bacterium through the Oxford cup method. A strain XYCC11 with significant antagonistic activity was screened out by morphological characterization, physiochemical tests, and molecular analysis including 16S rRNA and housekeeping gene sequencing and its aquaculture application as probiotics and safety was systematically investigated through artificial infection tests, hemolytic assays, along with evaluation of antibacterial capacity, temperature/pH tolerance, and adhesion capability. Furthermore, the effects of XYCC11 supplementation on growth performance, antioxidant capacity, non-specific immunity, and liver function in grass carp were investigated. Results showed that XYCC11 as Bacillus spizizenii by integrated identification exhibited strong and stable antagonism against A.hydrophila among 12 intestinal isolates. Hemolytic tests confirmed its non-pathogenicity. Protease K treatment eliminated its antibacterial activity, indicating proteinaceous antimicrobial substances. The cell-free supernatant of XYCC11 showed inhibitory effects against four major pathogenic bacteria including A. hydrophila. The strain displayed remarkable tolerance to extreme pH and high temperature, with superior adhesion capability compared to non-intestinal isolates. The grass carp fed the XYCC11-supplemented diets for 60 days had significantly elevated weight gain rate and specific growth rate (P<0.05) and reduced food conversion ratio (P<0.05). There were elevated activities of alkaline phosphatase and acid phosphatase (P<0.05), and decrease in activities of aspartate aminotransferase and alanine aminotransferase (P<0.05), and malondialdehyde content in low-dose and high-dose groups (P<0.05). The significantly enhanced serum superoxide dismutase and lysozyme activities were observed in high-dose group at 60 days (P<0.05). These findings suggest that B. spizizenii XYCC11 represents a safe and effective probiotic candidate for grass carp, warranting further development as aquatic probiotics preparation.
[1] WANG Q D, LI Z J, GUI J F, et al. Paradigm changes in freshwater aquaculture practices in China:moving towards achieving environmental integrity and sustainability[J]. Ambio,2018,47(4):410-426. [2] 贺文旭,毛会丽,杨利敏,等.豫北地区主要淡水鱼类感染嗜水气单胞菌的流行病学调查[J].水产科学,2016,35(3):278-283. [3] 郭少华,毛会丽,刘征权,等.一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J].生物技术通报,2023,39(8):291-306. [4] PENG B, CHEN X H, MUNANG′ANDU H M. Editorial:metabolic regulation of drug resistance and pathogenicity in aquatic pathogens[J]. Frontiers in Microbiology,2021,12:832756. [5] EL-SAADONY M T, ALAGAWANY M, PATRA A K, et al. The functionality of probiotics in aquaculture:an overview[J]. Fish & Shellfish Immunology,2021,117:36-52. [6] 张静,陈红莲,鲍俊杰,等.水产养殖中嗜水气单胞菌拮抗菌的研究进展[J].江苏农业科学,2020,48(17):21-33. [7] 韩迎香,刘玉鑫,包爱玲,等.益生菌拮抗病原菌的机制及应用研究进展[J].现代预防医学,2022,49(16):3068-3072. [8] Z'YMAN'CZYK-DUDA E, SAMSON S O, BRZEZIN'SKA-RODAK M, et al. Versatile applications of cyanobacteria in biotechnology[J]. Microorganisms,2022,10(12):2318. [9] MAI W N, CHEN J M, LIU H, et al. Advances in studies on microbiota involved in nitrogen removal processes and their applications in wastewater treatment[J]. Frontiers in Microbiology,2021,12:746293. [10] 秦振宁,肖睿铭,梁书利,等.鳙鱼肠道菌群多样性及潜在益生菌的分离鉴定[J].现代食品科技,2023,39(5):41-52. [11] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:62-65. [12] 布坎南R E, 吉本斯N E. 伯杰细菌鉴定手册[M]. 8版. 北京: 科学出版社,1984. [13] PANDIYAN P,BALARAMAN D, THIRUNAVUKKARASU R, et al. Probiotics in aquaculture[J]. Drug Invention Today,2013,5(1):55-59. [14] 史志远,陈楠,律娜,等.不同来源植物乳杆菌基因组的比较分析[J].食品安全质量检测学报,2021,12(17):6826-6834. [15] VINE N G, LEUKES W D, KAISER H. Probiotics in marine larviculture[J]. FEMS Microbiology Reviews,2006,30(3):404-427. [16] 辛维岗.两株不同来源唾液乳杆菌的益生性能比较[D].昆明:昆明理工大学,2023. [17] 樊丹,邓福容,李绍戊,等.一株虹鳟源枯草芽孢杆菌的分离鉴定及生物学特性研究[J].中国海洋大学学报(自然科学版),2022,52(2):41-49. [18] 刘钊熠.几种动物来源益生菌部分生物学特性的比较研究[D].哈尔滨:东北农业大学,2013. [19] 龚婷,骆祝华,于艳萍,等.基于16S rDNA和看家基因序列分析技术的鲍鱼养殖水体弧菌种类的鉴定[J].应用海洋学学报,2014,33(4):531-538. [20] 乌日拉嘎,徐海燕,宋宇琴,等.植物乳杆菌及其近缘种部分看家基因的系统发育分析[J].现代食品科技,2017,33(1):100-105. [21] 颜静婷,乔凯,蔡燕飞.rpoB、gyrA、cheA基因在芽孢杆菌鉴定上的应用[J].浙江农业学报,2022,34(1):128-140. [22] DUNLAP C A, BOWMAN M J, ZEIGLER D R. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status[J]. Antonie Van Leeuwenhoek,2020,113(1):1-12. [23] 张杨,王印庚,于永翔,等.海水养殖系统中37株枯草芽孢杆菌生理代谢、遗传特性及抑菌效果差异分析[J].微生物学通报,2023,50(8):3300-3313. [24] 赵勇,段为旦,王友成,等.益生菌在水产可持续养殖中的研究进展及展望[J].水产学报,2024. [25] MASMOUDI F, TOUNSI S, DUNLAP C A, et al. Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress[J]. Plant Cell Reports,2021,40(7):1199-1213. [26] 山东省花生研究所,中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所).一株防治花生和烟草根茎类病害的斯氏芽孢杆菌及其应用:CN118755632A[P].2024-10-11. [27] HELFRICH M, ENTIAN K D, STEIN T. Antibiotic profiling of wild-type bacilli led to the discovery of new lanthipeptide subtilin-producing Bacillus spizizenii strains whose 16S rDNA sequences differ from the B. spizizenii typing strain[J]. International Microbiology,2022,25(4):839-850. [28] 钟蔚.枯草芽孢杆菌微生态制剂制备工艺研究[D].南京:南京农业大学,2013. [29] 刘秀侠,徐海燕,辛国芹,等.11株枯草芽孢杆菌益生特性研究[J].中国畜牧兽医,2017,44(8):2333-2341. [30] 武婧玉,陈永艳,贾一然,等.鲤源高黏附力地衣芽孢杆菌HF-07107分离及其益生菌特性研究[J].南方农业学报,2023,54(9):2711-2720. [31] ZAINELDIN A I, HEGAZI S, KOSHIO S, et al. Bacillus subtilis as probiotic candidate for red sea bream:growth performance, oxidative status, and immune response traits[J]. Fish & Shellfish Immunology,2018,79:303-312. [32] AMOAH K, TAN B P, ZHANG S, et al. Host gut-derived Bacillus probiotics supplementation improves growth performance, serum and liver immunity, gut health, and resistive capacity against Vibrio harveyi infection in hybrid grouper (♀Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus)[J]. Animal Nutrition,2023,14:163-184. [33] 徐文彦,郭国军,唐国盘,等.枯草芽孢杆菌对黄河鲤鱼生产性能及消化酶活性的影响[J].湖北农业科学,2013,52(10):2380-2382. [34] 陈南南.饵料中添加芽孢杆菌对草鱼生长的影响及机理探讨[D].杭州:浙江大学,2010. [35] LIU H T, WANG S F, CAI Y, et al. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology,2017,60:326-333. [36] WANG Y, WU Y P, WANG Y Y, et al. Antioxidant properties of probiotic bacteria[J]. Nutrients,2017,9(5):521. [37] 孟文蓉,米浩宇,黄怡忱,等.贝莱斯芽孢杆菌MSP05对泥鳅生长、消化及免疫的影响[J].水产科学,2023,42(4):712-718. [38] DI J, CHU Z P, ZHANG S H, et al. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus[J]. Fish & Shellfish Immunology,2019,93:711-719. [39] 胡娟.水产土著芽孢杆菌在鲤鱼和斑马鱼中的益生效应评价研究[D].北京:中国农业科学院,2021. [40] LIAO J Q, CAI Y, WANG X R, et al. Effects of a potential host gut-derived probiotic, Bacillus subtilis 6-3-1, on the growth, non-specific immune response and disease resistance of hybrid grouper (Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂)[J]. Probiotics and Antimicrobial Proteins,2021,13(4):1119-1137.