Toxic Effects of Antioxidants and Sulfonamide Antibiotics on Green Alga Chlorella vulgaris
TAN Hui1,2, TAN Hailing1,2,3, HU Haopeng1,2, HE Juntao1,2, LIAO Yongling2, YANG Jun2, ZHANG Hui4, CHAI Yi1,2, TAN Fengxia1,2
1. Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Jingzhou 434025, China; 2. College of Animal Science and Technology, College of Agriculture, College of Horticulture and Landscape Architecture, Yangtze University, Jingzhou 434025, China; 3. Jiangling Vocational Education Center, Jingzhou 434100, China; 4. Key Laboratory of Freshwater Biodiversitly Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
Abstract:In order to explore the single and combined toxic effects and mechanisms of antioxidants(6PPD) and antibiotics sulfamethoxazole and sulfadiazine in aquatic environment, green alga Chlorella vulgaris was expanded in BG11 medium in a light incubator, and exposed to different concentrations of 6PPD (0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mg/L), sulfamethoxazole (0, 5.0, 10.0, 15.0, 20.0, and 25.0 mg/L), sulfadiazine (0, 1.0, 5.0, 10.0, 15.0, and 20.0 mg/L) (single treatment group) and 6PPD + sulfamethoxazole and 6PPD + sulfadiazine (combined treatment group) (0, 0.1, 0.5, 1.0, 1.2 and 1.5 T) for 96 h, and algal density and other indicators were analyzed. The results showed that the 96-hour median-lethal concentration to C. vulgaris was 2.31 mg/L for 6PPD, 23.95 mg/L for sulfamethoxazole, and 13.88 mg/L for sulfadiazine in single exposure systems, and 1.131 T for the combined exposure groups (6PPD 1.155 mg/L + sulfamethoxazole 11.975 mg/L) and 1.229 T for (6PPD + sulfadiazine 6.940 mg/L), with partial additive effect. There were significant decrease in chlorophyll, total protein, and intracellular polysaccharide contents of algal cells in all treatment groups, indicating impaired photosynthesis. The contents of reactive oxygen species and malondialdehyde were showed to be increased significantly, indicating severe oxidative damage. The total antioxidant capacity and superoxide dismutase activity were found to be also increased due to excessive accumulation of reactive oxygen species, indicating that the dynamic balance between the generation of reactive oxygen species and the scavenging by the antioxidant system was disrupted, resulting in toxic effects. Transmission electron microscopy observations revealed disorders in thylakoid structure, dissolution of organelles, and vacuolation, with the damage in combined exposure groups being significantly more severe than that in single exposure groups. The finding indicates that 6PPD, sulfamethoxazole, and sulfadiazine can exert significant toxicity on algae by interfering with photosynthesis and inducing oxidative damage, and the binary composite systems exhibit partial additive effects.
谭慧, 谭海玲, 胡浩鹏, 何俊涛, 廖咏玲, 杨军, 张辉, 柴毅, 谭凤霞. 防老剂与磺胺类抗生素对普通小球藻的毒性研究[J]. 水产科学, 2026, 45(1): 102-114.
TAN Hui, TAN Hailing, HU Haopeng, HE Juntao, LIAO Yongling, YANG Jun, ZHANG Hui, CHAI Yi, TAN Fengxia. Toxic Effects of Antioxidants and Sulfonamide Antibiotics on Green Alga Chlorella vulgaris. Fisheries Science, 2026, 45(1): 102-114.
[1] HOUGH P, VAN DER AAR N, QIU Z Y. Compounding and mixing methodology for good performance of EPDM in tire sidewalls[J]. Tire Science and Technology,2020,48(1):2-21. [2] DOROFEEV A, ZEMSKII D. Oxypropylated aromatic diamines-stabilisers for tyre rubbers[J]. International Polymer Science and Technology, 2017,44(6):27-30. [3] ZHENG W, JIA Z X, ZHANG Z, et al. Improvements of lanthanum complex on the thermal-oxidative stability of natural rubber[J]. Journal of Materials Science,2016,51(19):9043-9056. [4] 于淑池,许丽敏,张翼,等.对苯二胺对泥鳅酯酶同工酶谱的影响[J].水产科学,2012,31(8):495-498. [5] 陈丽欢.汽车轮胎中硫化促进剂和胺类防老剂的环境行为研究[D].广州:暨南大学,2020. [6] 张帆.非铜系催化剂合成防老剂6PPD研究进展[J].广东化工,2014,41(10):85-86. [7] WIK A, NILSSON E, KÄLLQVIST T, et al. Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations[J]. Chemosphere,2009,77(7):922-927. [8] KOLOMIJECA A, PARROTT J, KHAN H, et al. Increased temperature and turbulence alter the effects of leachates from tire particles on fathead minnow (Pimephales promelas)[J]. Environmental Science & Technology,2020,54(3):1750-1759. [9] CHIBWE L, PARROTT J L, SHIRES K, et al. A deep dive into the complex chemical mixture and toxicity of tire wear particle leachate in fathead minnow[J]. Environmental Toxicology and Chemistry,2022,41(5):1144-1153. [10] HALLE L L, PALMQVIST A, KAMPMANN K, et al. Tire wear particle and leachate exposures from a pristine and road-worn tire to Hyalella azteca:comparison of chemical content and biological effects[J]. Aquatic Toxicology,2021,232:105769. [11] CHEN J F, XIE S G. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms[J]. Science of the Total Environment,2018,640:1465-1477. [12] 李振环,朱英,胡小键,等.抗生素的人体健康风险、内暴露特征及检测技术研究进展[J].环境化学,2023,42(12):4051-4066. [13] 纪浩,杨依琳,邢戎光,等.渭河西安段水体中磺胺类抗生素的污染特征及生态风险评价[J].环境污染与防治,2023,45(4):521-527. [14] WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology,2010,44(18):6933-6939. [15] VÄLITALO P, KRUGLOVA A, MIKOLA A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms:a mini-review[J]. International Journal of Hygiene and Environmental Health,2017,220(3):558-569. [16] ZHANG H Y, HUANG Z, LIU Y H, et al. Occurrence and risks of 23 tire additives and their transformation products in an urban water system[J]. Environment International,2023,171:107715. [17] ZHANG R L, ZHAO S Z, LIU X, et al. Aquatic environmental fates and risks of benzotriazoles, benzothiazoles, and p-phenylenediamines in a catchment providing water to a megacity of China[J]. Environmental Research,2023,216:114721. [18] ZHU J Q, GUO R Y, REN F F, et al. Occurrence and partitioning of p-phenylenediamine antioxidants and their quinone derivatives in water and sediment[J]. Science of the Total Environment,2024,914:170046. [19] CAO G D, WANG W, ZHANG J, et al. New evidence of rubber-derived quinones in water, air, and soil[J]. Environmental Science & Technology,2022,56(7):4142-4150. [20] 李吉平.蛋白核小球藻对典型大环内酯类抗生素胁迫的响应及机制[D].南京:南京林业大学,2023. [21] 叶计朋,邹世春,张干,等.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境,2007,16(2):384-388. [22] 田永静,孙甜甜,皮宇松,等.锌与双酚A复合暴露对普通小球藻的联合毒性作用评估[J].生态毒理学报,2021,16(4):292-300. [23] 中华人民共和国生态环境部.淡水生物水质基准推导技术指南:HJ 831—2022[S].北京:中国环境科学出版社,2022. [24] 李永峰,王宾,应杉.环境毒理学研究技术与方法[M].哈尔滨:哈尔滨工业大学出版社,2011. [25] SUN C, LI W, XU Y F, et al. Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus[J]. Aquatic Toxicology,2020,224:105504. [26] 葸玉琴,赖金霞,张明旭,等.Cr3+和Cd2+对普通小球藻生长及抗氧化酶活性的影响[J].微生物学报,2021,61(7):2091-2100. [27] 孙凤,吴磊,叶硕,等.活性炭对铜绿微囊藻胞外有机物的吸附规律[J].中国环境科学,2025,45(3):1546-1555. [28] 余佳妮,李立杰,葛恒,等.六价铬对普通小球藻的急性毒性效应[J].淡水渔业,2023,53(6):80-87. [29] 魏思洁,马馨月,张超,等.Cr6+、Pb2+和Ni2+对莱茵衣藻的毒性效应研究[J].安全与环境工程,2020,27(3):40-47. [30] LI J P,LI W, MIN Z F, et al. Physiological, biochemical and transcription effects of roxithromycin before and after phototransformation in Chlorella pyrenoidosa[J]. Aquatic Toxicology,2021,238:105911. [31] VOLLAND S, LÜTZ C, MICHALKE B, et al. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias[J]. Aquatic Toxicology,2012,109:59-69. [32] 周上洋,赵建亮,黄国勇,等.重金属Zn、Cu和Hg对基因重组发光菌的综合毒性及其联合效应[J].华南师范大学学报(自然科学版),2018,50(1):33-37. [33] 张瑞雪,王丹,周彦宏,等.钙镁钾离子混合物对水体中几种重金属离子毒性的影响及作用机理[J].西安交通大学学报,2024,58(11):185-195. [34] 周静韵,段舜山.全氟辛酸和全氟壬酸对两种海洋微藻的联合毒性效应[J].生态科学,2016,35(6):84-90. [35] 高成.重金属和抗生素对铜绿微囊藻的混合毒性评价[D].杨凌:西北农林科技大学,2020. [36] WANG F, GAO J, ZHAI W J, et al. Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment[J]. Ecotoxicology and Environmental Safety,2021,208:111717. [37] 张笑一,潘渝生.重金属致毒的化学机理[J].环境科学研究,1997,10(2):45-49. [38] LIU B Y, LIU W Q, NIE X P, et al. Growth response and toxic effects of three antibiotics on Selenastrumcapricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis[J]. Journal of Environmental Sciences,2011,23(9):1558-1563. [39] CHEN J, WU L L, ZHANG J, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography[J]. Scientific Reports,2020,10(1):19196. [40] 杨顺航.重金属锌和磺胺类抗生素长期胁迫对铜绿微囊藻和斜生栅藻的毒性效应研究[D].荆州:长江大学,2024. [41] CHEN Y, YUAN L, CHEN J Y, et al. Response and adaptation of Chlorella pyrenoidosa to 6PPD:physiological and genetic mechanisms[J]. Journal of Hazardous Materials,2024,480:136122. [42] VENTURA-LIMA J, BOGO M R, MONSERRAT J M. Arsenic toxicity in mammals and aquatic animals:a comparative biochemical approach[J]. Ecotoxicology and Environmental Safety,2011,74(3):211-218. [43] CHEN L G, YU K, HUANG C J, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae[J]. Environmental Science & Technology,2012,46(17):9727-9734. [44] 姜蕾,陈书怡,尹大强.四环素对铜绿微囊藻光合作用和抗氧化酶活性的影响[J].生态与农村环境学报,2010,26(6):564-567. [45] CHRISTEN V, HICKMANN S, RECHENBERG B, et al. Highly active human pharmaceuticals in aquatic systems:a concept for their identification based on their mode of action[J]. Aquatic Toxicology,2010,96(3):167-181. [46] TRIPATHI S, POLURI K M. Heavy metal detoxification mechanisms by microalgae:insights from transcriptomics analysis[J]. Environmental Pollution,2021,285:117443. [47] 王桂祥,张琼,匡少平,等.环境浓度下的混合抗生素对普通小球藻的联合毒性[J].生态毒理学报,2019,14(2):122-128. [48] 周旭东. 四环素类、磺胺类抗生素对铜绿微囊藻和小球衣藻的影响研究[D].杨陵:西北农林科技大学,2017. [49] BEČKOVÁ M, GARDIAN Z, YU J F, et al. Association of Psb28 and Psb27 proteins with PSⅡ-PSⅠ super complexes upon exposure of Synechocystis sp. PCC 6803 to high light[J]. Molecular Plant,2017,10(1):62-72. [50] JASPERS P, KANGASJÄRVI J. Reactive oxygen species in abiotic stress signaling[J]. Physiologia Plantarum,2010,138(4):405-413.