|
|
A Review: Advance Research on Toxic Effects of Heavy Metals on Shrimp |
XU Chi1,2, XIAN Jian'an1, GUO Hui2, ZHANG Xiuxia1, ZHANG Zelong1, ZHENG Peihua1, LI Juntao1, LU Yaopeng1 |
1. Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; 2. Zhanjiang Key Laboratory of Marine Ecology and Aquaculture Environment, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China |
|
|
|
Received: 09 January 2024
|
|
|
|
|
[1] TAHER T B, ALTHAUS C E, TRANTER P J, et al. Impacts of shrimp aquaculture on the local communities and conservation of the world's largest protected mangrove forest[J]. Environmental Science & Policy,2023,147:351-360. [2] EMERENCIANO M GC, ROMBENSO A N, VIEIRA F D N, et al. Intensification of penaeid shrimp culture:an applied review of advances in production systems, nutrition and breeding[J]. Animals,2022,12(3):236. [3] LE N T T, HESTVIK E B, ARMSTRONG C W, et al. Determinants of inefficiency in shrimp aquaculture under environmental impacts:comparing shrimp production systems in the Mekong, Vietnam[J]. Journal of the World Aquaculture Society,2022,53(5):963-983. [4] LI N, HOU Y H, MA D D, et al. Lead accumulation, oxidative damage and histopathological alteration in testes and accessory glands of freshwater crab, Sinopotamon henanense, induced by acute lead exposure [J]. Ecotoxicology and Environmental Safety,2015,117:20-27. [5] SHAHSAVANI A, FAKHRI Y, FERRANTE M, et al. Risk assessment of heavy metals bioaccumulation:fished shrimps from the Persian gulf[J]. Toxin Reviews,2017,36(4):322-330. [6] WU Y S, HUANG S L, CHUNG H C, et al. Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure[J]. Fish & Shellfish Immunology,2017,62:116-123. [7] QIAN D W, XU C, CHEN C Z, et al. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2020,100:445-455. [8] CHEN Y H, HE J G. Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection[J]. Fish & Shellfish Immunology,2019,84:744-755. [9] BU R Q, WANG P F, ZHAO C, et al. Gene characteristics, immune and stress responses of PmPrx1 in black tiger shrimp (Penaeus monodon):insights from exposure to pathogenic bacteria and toxic environmental stressors [J]. Developmental and Comparative Immunology,2017,77:1-16. [10] PENG F J, LI J W, GONG Z Y, et al. Investigation of bioaccumulation and human health risk assessment of heavy metals in crayfish (Procambarus clarkii) farming with a rice-crayfish-based coculture breeding modes [J]. Foods,2022,11(3):261. [11] FRÍAS-ESPERICUETA M G, ABAD-ROSALES S, NEVÁREZ-VELÁZQUEZ A C, et al. Histological effects of a combination of heavy metals on Pacific white shrimp Litopenaeus vannamei juveniles[J]. Aquatic Toxicology,2008,89(3):152-157. [12] WU Y S, CHANG C H, NAN F H. Steroid hormone ″cortisone″ and ″20-hydroxyecdysone″ involved in the non-specific immune responses of white shrimp (Litopenaeus vannamei)[J]. Fish & Shellfish Immunology,2016,56:272-277. [13] 高淑英,邹栋樑.镉、锌和锰对长毛对虾幼体的急性毒性[J].海洋通报,1995,14(6):83-86. [14] ASIH A Y P, IRAWAN B, SOEGIANTO A. Effect of copper on survival, osmoregulation, and gill structures of freshwater prawn (Macrobrachium rosenbergii, de Man) at different development stages[J]. Marine and Freshwater Behaviour and Physiology,2013,46(2):75-88. [15] BAMBANG Y, THUET P, CHARMANTIER-DAURES M, et al. Effect of copper on survival and osmoregulation of various developmental stages of the shrimp Penaeus japonicus bate (Crustacea, Decapoda)[J]. Aquatic Toxicology,1995,33(2):125-139. [16] 李建军,杨笑波,黄韧,等.五种重金属离子对黑褐新糠虾的急性毒性试验[J].海洋环境科学,2006,25(2):51-53. [17] HAQUE M N, LEE D H, KIM B M, et al. Dose-and age-specific antioxidant responses of the mysid crustacean Neomysis awatschensis to metal exposure[J]. Aquatic Toxicology,2018,201:21-30. [18] 邹栋梁,高淑英.铜、锌、镉、汞、锰和铬对斑节对虾仔虾急性致毒的研究[J].海洋环境科学,1994,13(3):13-18. [19] 宋维彦,靳桂双,毕伟伟,等.五种重金属离子对克氏原螯虾(Procambarus clarkii)的急性毒性作用研究[J].激光生物学报,2010,19(2):206-211. [20] 陈细香,康瑞莲,蔡月明,等.4种重金属对克氏原螯虾的急性毒性研究[J].安徽农业科学,2012,40(32):15715-15718. [21] 郑琰晶,魏社林,吴进孝,等.Cu2+、Zn2+、SDS、DBS对脊尾白虾的毒性试验[J].热带海洋学报,2006,25(5):87-90. [22] 张彩明.几种常见重金属对日本黄姑鱼和脊尾白虾的毒性效应研究[D].舟山:浙江海洋学院,2013. [23] ZHANG C S, YU K J, LI F H, et al. Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda[J]. Ecotoxicology and Environmental Safety,2017,145:549-556. [24] 王红义,曹善茂,李应东,等.4种重金属离子对中华原钩虾幼虾的急性毒性研究[J].河北渔业,2010(5):7-9. [25] 白东清,郭永军,董少杰,等.Cu2+·Zn2+·SDS·DBS对凡纳滨对虾仔虾的毒性试验[J].安徽农业科学,2009,37(30):15074-15076. [26] BARBIERI E. Use of oxygen consumption and ammonium excretion to evaluate the sublethal toxicity of cadmium and zinc on Litopenaeus schmitti (Burkenroad,1936, Crustacea)[J]. Water Environment Research,2007,79(6):641-646. [27] SHUHAIMI-OTHMAN M, YAKUB N, RAMLE N A, et al. Sensitivity of the freshwater prawn, Macrobrachium lanchesteri (Crustacea:Decapoda), to heavy metals[J]. Toxicology and Industrial Health,2011,27(6):523-530. [28] 李娜.水体Cu2+对罗氏沼虾(Macrobrachium rosenbergii)毒性作用机制的研究[D].上海:华东师范大学,2006. [29] YANG J L, CHEN L H, LEE Y C, et al. Comparative acute toxicity of Copper (Ⅱ), Cadmium (Ⅱ), and Gallium (Ⅲ) on freshwater shrimp (Macrobrachium nipponense) and reference values for five aquatic organisms[J]. Environ Sci, 2008, 3(2). [30] 谢嘉,滕佳,刘永亮,等.Cd2+和Pb2+单一与复合污染对脊尾白虾的急性毒性效应研究[J].海洋科学,2017,41(5):27-33. [31] 梁华芳,卓宏标,廖永岩,等.Cd2+和Hg2+对波纹龙虾的急性毒性[J].水产科学,2020,39(3):420-424. [32] 张亚娟,王军霞,赵盼茹,等.Hg2+对日本沼虾的毒性作用[J].河北大学学报(自然科学版),2008,28(1):74-78. [33] 吕耀平,李小玲,贾秀英.Cr6+、Mn7+和Hg2+对青虾的毒性和联合毒性研究[J].上海水产大学学报,2007,16(6):549-554. [34] SOEGIANTO A, ASIH A Y P, IRAWAN B. Lead toxicity at different life stages of the giant prawn (Macrobrachium rosenbergii, de man):considerations of osmoregulatory capacity and histological changes in adult gills[J]. Marine and Freshwater Behaviour and Physiology,2016,49(3):187-200. [35] 王志铮,吕敢堂,许俊,等.Cr6+、Zn2+、Hg2+对凡纳滨对虾幼虾急性毒性和联合毒性研究[J].海洋水产研究,2005,26(2):6-12. [36] LIU J J, DIAO Z H, XU X R, et al. Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments[J]. Science of the Total Environment,2019,666:894-901. [37] ZHANG X, ZHAO B W, LIU H, et al. Effects of pyrolysis temperature on biochar's characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars [J]. Environmental Technology & Innovation,2022,26:102288. [38] ZHANG Y H, ZHANG H H, ZHANG Z B, et al. pH effect on heavy metal release from a polluted sediment[J]. Journal of Chemistry,2018,2018:7597640. [39] BARBIERI E, DOI S A. The effects of different temperature and salinity levels on the acute toxicity of zinc in the pink shrimp (Farfantepenaeus paulensis)[J]. Marine and Freshwater Behaviour and Physiology,2011,44(4):251-263. [40] FÖRSTNER U. Metal transfer between solid and aqueous phases[M]//FÖRSTNER U, WITTMANN G T W. Metal Pollution in the Aquatic Environment. Berlin, Heidelberg:Springer Berlin Heidelberg,1981:197-270. [41] WILLIAMS T P, BUBB J M, LESTER J N. Metal accumulation within salt marsh environments:a review[J]. Marine Pollution Bulletin,1994,28(5):277-290. [42] ONCEL I, KELEŞ Y, USTÜN A S. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings[J]. Environmental Pollution,2000,107(3):315-320. [43] BROWN A, THATJE S, HAUTON C. The effects of temperature and hydrostatic pressure on metal toxicity:insights into toxicity in the deep sea[J]. Environmental Science & Technology,2017,51(17):10222-10231. [44] RAO D G V P, KHAN M A Q. Zebra mussels:enhancement of copper toxicity by high temperature and its relationship with respiration and metabolism[J]. Water Environment Research,2000,72(2):175-178. [45] PILEHVAR A, CORDERY K I, TOWN R M, et al. The synergistic toxicity of Cd(Ⅱ) and Cu(Ⅱ) to zebrafish (Danio rerio):effect of water hardness[J]. Chemosphere,2020,247:125942. [46] YIM J H, KIM K W, KIM S D. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna:prediction of acid mine drainage toxicity[J]. Journal of Hazardous Materials,2006,138(1):16-21. [47] ÇELEBI H, GÖK G, GÖK O. Adsorption capability of brewed tea waste in waters containing toxic lead(Ⅱ), cadmium (Ⅱ), nickel (Ⅱ), and zinc(Ⅱ) heavy metal ions[J]. Scientific Reports,2020,10:17570. [48] WANG Z, MEADOR J P, LEUNG K M Y. Metal toxicity to freshwater organisms as a function of pH:a meta-analysis[J]. Chemosphere,2016,144:1544-1552. [49] MOBERLY J G,STAVEN A, SANI R K, et al. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments[J]. Environmental Science & Technology,2010,44(19):7302-7308. [50] LI X F, WANG P F, FENG C L, et al. Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China[J]. Bulletin of Environmental Contamination and Toxicology,2019,103(1):120-126. [51] HOLTZE K. Effects of pH and ionic strength on aluminum toxicity to early developmental stages of rainbow trout (Salmo gairdneri Richardson)[R]. Rexdale, Canada:Ontario Ministry of the Environment,1983. [52] STARODUB M E, WONG P T S, MAYFIELD C I, et al. Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga[J]. Canadian Journal of Fisheries and Aquatic Sciences,1987,44(6):1173-1180. [53] MESSERLI M A, AMARAL-ZETTLER L A, ZETTLER E, et al. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile[J]. The Journal of Experimental Biology,2005,208(Pt 13):2569-2579. [54] RASHED M N. Monitoring of environmental heavy metals in fish from Nasser Lake[J]. Environment International, 2001,27(1):27-33. [55] HOSSAIN M B, BHUIYAN N Z, KASEM A, et al. Heavy metals in four marine fish and shrimp species from a subtropical coastal area:accumulation and consumer health risk assessment[J]. Biology,2022,11(12):1780. [56] FRÉMION F, BORDAS F, MOURIER B, et al. Influence of dams on sediment continuity:a study case of a natural metallic contamination[J]. The Science of the Total Environment,2016,547:282-294. [57] HATANO A, SHOJI R. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM)[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology,2010,151 (1):25-32. [58] WANG R F, ZHU L M, ZHANG J, et al. Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae[J]. Chemosphere,2020,247:125923. [59] ZHANG H, CAO H B, MENG Y B, et al. The toxicity of cadmium (Cd2+) towards embryos and pro-larva of soldatov's catfish (Silurus soldatovi)[J]. Ecotoxicology and Environmental Safety,2012,80:258-265. [60] IDRUS F A, BASRI M M, RAHIM K A A, et al. Concentrations of cadmium, copper, and zinc in Macrobrachium rosenbergii (giant freshwater prawn) from natural environment[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(3):350-355. [61] OLGUNOGLU M, OLGUNOGLUI, BAYHAN Y. Heavy metal concentrations (Cd, Pb, Cu, Zn, Fe) in giant red shrimp (Aristaeomorpha foliacea risso 1827) from the Mediterranean Sea[J]. Polish Journal of Environmental Studies,2015,24(2):631-635. [62] WU X Y, YANG Y F. Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source[J]. Journal of Food Composition and Analysis,2011,24(1):62-65. [63] EZEMONYE L I, ADEBAYO P O, ENUNEKU A A, et al. Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria[J]. Toxicology Reports,2019,6:1-9. [64] HIDAYATI N V, PRUDENT P, ASIA L, et al. Assessment of the ecological and human health risks from metals in shrimp aquaculture environments in Central Java, Indonesia[J]. Environmental Science and Pollution Research International,2020,27(33):41668-41687. [65] ZHANG C S, JIN Y, YU Y, et al. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902)[J]. Ecotoxicology and Environmental Safety,2021,208:111591. [66] DING Z L, KONG Y Q, SHAO X P, et al. Growth, antioxidant capacity, intestinal morphology, and metabolomic responses of juvenile oriental river prawn (Macrobrachium nipponense) to chronic lead exposure[J]. Chemosphere,2019,217:289-297. [67] ANANI O A, OLOMUKORO J O, Assessment of Metal Accumulation and Bioaccumulation Factor of Some Trace and Heavy Metals in Freshwater Prawn and Crab[M]//DIARTE-PLATA G, ESCAMILLA-MONTES R. Crustacea. London: IntechOpen, 2020. [68] MANYIN T, ROWE C L. Reproductive and life stage specific effects of aqueous copper on the grass shrimp, Palaemonetes pugio[J]. Marine Environmental Research,2010,69(3):152-157. [69] 王书莉. Cd2+、Pb2+、Cu2+浓度对克氏原螯虾生长及其体内富集的影响[D]. 扬州:扬州大学,2013. . [70] ALCORLO P, LOZANO I, BALTANÁS A. Heavy metals effects on life traits of juveniles of Procambarus clarkii[J]. AIMS Environmental Science,2019,6(3):147-166. [71] ZHANG L, ZHOU Y T, SONG Z W, et al. Mercury induced tissue damage, redox metabolism, ion transport, apoptosis, and intestinal microbiota change in red swamp crayfish (Procambarus clarkii):application of multi-omics analysis in risk assessment of Hg[J]. Antioxidants,2022,11(10):1944. [72] MAMDOUH S, MOHAMED A S, ALI MOHAMED H, et al. The effect of zinc concentration on physiological, immunological, and histological changes in crayfish (Procambarus clarkii) as bio-indicator for environment quality criteria[J]. Biological Trace Element Research,2022,200(1):375-384. [73] DUAN Y F, WANG Y, HUANG J H, et al. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei[J]. Marine Pollution Bulletin,2021,167:112220. [74] LI Y L, ZHOU X W, GUO W, et al. Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish, Procambarus clarkii[J]. Aquatic Toxicology,2023,265:106768. [75] CAPPARELLI M V, BORDON I C, ARAUJO G, et al. Combined effects of temperature and copper on oxygen consumption and antioxidant responses in the mudflat fiddler crab Minuca rapax (Brachyura, Ocypodidae)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2019,223:35-41. [76] WANG L, GUAN T Y, WANG G L, et al. Effects of copper on gill function of juvenile oriental river prawn (Macrobrachium nipponense):stress and toxic mechanism[J]. Aquatic Toxicology,2023,261:106631. [77] BAO J, XING Y N, FENG C C, et al. Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus[J]. Scientific Reports,2020,10(1):16700. [78] SHARMA K, GULATI R, BAMEL K, et al. Histological and biochemical evidence of Zinc toxicity in white leg shrimp, Litopenaeus vannamei Boone[J]. Indian Journal of Ecology,2023,50(5):1766-1771. [79] WU J P, CHEN H C. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei)[J]. Chemosphere,2004,57(11):1591-1598. [80] ZHANG C S, LI F H, XIANG J H. Acute effects of cadmium and copper on survival, oxygen consumption, ammonia-N excretion, and metal accumulation in juvenile Exopalaemon carinicauda[J]. Ecotoxicology and Environmental Safety,2014,104:209-214. [81] WEI K Q, YANG J X. Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii[J]. Fish & Shellfish Immunology,2016,52:221-229. [82] GUO H, LI K X, WANG W, et al. Effects of copper on hemocyte apoptosis, ROS production, and gene expression in white shrimp Litopenaeus vannamei[J]. Biological Trace Element Research,2017,179(2):318-326. [83] NURAN ERCAL B S P, HANDE GURER-ORHAN B S P, NUKHET AYKIN-BURNS B S P. Toxic metals and oxidative stress part Ⅰ:mechanisms involved in metal induced oxidative damage[J]. Current Topics in Medicinal Chemistry,2001,1(6):529-539. [84] RANI A, KUMAR A, LAL A, et al. Cellular mechanisms of cadmium-induced toxicity:a review[J]. International Journal of Environmental Health Research,2014,24(4):378-399. [85] JIAO L F, DAI T M, JIN M, et al. Transcriptome analysis of the hepatopancreas in the Litopenaeus vannamei responding to the lead stress[J]. Biological Trace Element Research,2021,199(3):1100-1109. [86] REBOLLEDO U A, PÁEZ-OSUNA F, FERNÁNDEZ R. Single and mixture toxicity of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn to the rotifer Proales similis under different salinities[J]. Environmental Pollution (Barking, Essex,2021,271:116357. [87] WANG L, FENG J B, WANG G L, et al. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense[J]. Ecotoxicology and Environmental Safety, 2021,224:112651. [88] WANG Z Q, YANG L L, ZHOU F, et al. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress[J]. Journal of Hazardous Materials,2023,448:130820. [89] ZHANG Y, LI Z Y, KHOLODKEVICH S, et al. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii)[J]. The Science of the Total Environment,2019,666:944-955. [90] GUO H, CHEN T C, LIANG Z, et al. iTRAQ and PRM-based comparative proteomic profiling in gills of white shrimp Litopenaeus vannamei under copper stress[J]. Chemosphere,2021,263:128270. [91] LIU X, JIANG H C, YE B Q, et al. Comparative transcriptome analysis of the gills and hepatopancreas from Macrobrachium rosenbergii exposed to the heavy metal Cadmium (Cd2+)[J]. Scientific Reports,2021,11:16140. [92] JIAO L F, DAI T M, CAO T L, et al. New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis[J]. Marine Pollution Bulletin,2020,160:111673. [93] MISHRA S, DUBEY R S. Heavy metal uptake and detoxification mechanisms in plants[J]. International Journal of Agricultural Research,2010,5(7):482-501 [94] QIAN Z Y, HOU D Q, GAO S, et al. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis[J]. Chemosphere,2024,361:142578. |
|
|
|