|
|
Analysis and Evaluation of Nutritional Components of Introduced Russian Red Sea Cucumber |
YANG Shuang1,2, SUN Guohua2, REN Lihua2,3, CHEN Meng1,2, YANG Jianmin4, WANG Weijun4, JIANG Fang2,3 |
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; 2. Shandong Marine Resources and Environment Research Institute, Yantai 264006, China; 3. Quality Supervision & Inspection Center for Fishery Products, Ministry of Agriculture and Rural Affairs, Yantai 264006, China; 4. College of Agriculture, Ludong University, Yantai 264025, China |
|
|
Abstract The contents of crude protein, crude polysaccharide, ash, crude fat, crude saponin, inorganic element, amino acid and fatty acid were determined by conventional standard method in introduced Russian red sea cucumber Apostichopus japonicus and the common sea cucumber cultured in the same conditions. It was found that contents of crude protein, crude saponin and crude lipid in Russian red sea cucumber were significantly higher than those in the normal sea cucumber (P<0.05), without significant difference in contents of crude polysaccharide and ash. The contents of Mg, Ca, Mn, Zn, Sr and Se were significantly lower in the Russian red sea cucumber than those in the common sea cucumber (P<0.05), the contents of Cd, Pb, As and Al in the Russian red sea cucumber were significantly lower than those in the common sea cucumber (P<0.05), the content of Fe in the red sea cucumber was significantly higher than those in the common sea cucumber (P<0.05), and there was no significant difference in Cr content. Fourteen amino acids content of the 17 detected amino acids were significantly higher in Russian red sea cucumber than those in the common sea cucumber (P<0.05), and the contents of total amino acids, essential amino acids and effective amino acids were significantly higher in Russian red sea cucumber than those in common sea cucumbers. Twenty-seven main fatty acids were detected in both sea cucumbers, with the same fatty acid composition. The content of unsaturated fatty acid was higher in Russian red sea cucumber than that of saturated fatty acid, and the content of polyunsaturated fatty acid was significantly higher than that of monounsaturated fatty acid (P<0.05). The contents of saturated fatty acid, unsaturated fatty acid and polyunsaturated fatty acid of Russian red sea cucumber were significantly higher than those in common sea cucumber (P<0.05). According to the comprehensive evaluation, the nutritional components of the two sea cucumbers were similar, and the Russian red sea cucumber has better quality than the common sea cucumber did under the same culture conditions.
|
Received: 21 December 2018
|
|
|
|
|
[1]廖玉麟. 我国的海参[J]. 生物学通报,2001,36(9):1-3. [2]王共明. 仿刺参卵多肽、多糖的制备及多肽活性研究[D]. 上海:上海海洋大学,2013. [3]万玉美,赵春龙,崔兆进,等. 鱼礁区与池塘养殖刺参体壁营养成分的分析及评价[J]. 大连海洋大学学报,2015,30(2):190-195. [4]关崇新,刁全平,侯冬岩,等. 俄罗斯海参脂肪酸的气相色谱—质谱分析[J]. 鞍山师范学院学报,2015,17(4):33-35. [5]张黎黎,曹学彬,李君华,等. 俄罗斯仿刺参与中国仿刺参杂交F1幼参的早期生长比较[J]. 水产科学,2013,32(2):68-72. [6]赵艳芳,盛晓风,宁劲松,等. 我国北方3种主要养殖模式刺参的营养组成与功能性成分差异研究[J]. 食品安全质量检测学报,2018,9(8):1795-1801. [7]王共明,张健,王茂剑,等. 仿刺参卵酶解工艺条件优化[J]. 食品科学,2012,33(23):193-198. [8]Metcalfe L D, Schmitz A A, Pelka J R. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis[J]. Analytical Chemistry,1966,38(3):514-515. [9]苏秀榕,娄永江,常亚青,等. 海参的营养成分及海参多糖的抗肿瘤活性的研究[J]. 营养学报,2003,25(2):181-182. [10]王鹤,姜作真,高雁,等. 不同地域及不同养殖模式刺参营养品质的分析比较[J]. 水产科技情报,2017,44(3):123-127. [11]张春丹,姜李雁,苏秀榕,等. 南北养殖仿刺参营养成分的比较[J]. 水产科学,2013,32(1):41-45. [12]王远红,王聪,郭丽萍,等. 海参科(Holothuriidae)中4种海参的营养成分分析[J]. 中国海洋大学学报:自然科学版,2010,40(7):111-114. [13]高子阳,王瑞,郭夫江,等. 不同种类市售海参的总皂苷含量测定[J]. 中国试验方剂学杂志,2014,20(15):89-92. [14]王哲平,刘淇,曹荣,等. 野生与养殖刺参营养成分的比较分析[J]. 南方水产科学,2012,8(2):64-70. [15]张凡伟,张小燕,李少萍,等. 冻干刺参矿质元素及氨基酸营养评价[J]. 食品科技,2018,43(1):72-76. [16]高岳,林研彤,侯淑敏,等. 不同产地和养殖方式的刺参微量元素含量的比较[J]. 大连海洋大学学报,2014,29(5):498-501. [17]郝振林,徐瀚晨,于洋洋,等. 不同海域刺参氨基酸的比较分析[J]. 河北渔业,2017(11):8-13,62. [18]刘旭佳,黄国强,李坚明,等. 室内养殖不同月龄糙海参营养成分分析[J]. 广东海洋大学学报,2018,38(2):85-90. [19]李丹彤,常亚青,陈炜,等. 獐子岛野生刺参体壁营养成分的分析[J]. 大连水产学院学报,2006,21(3):278-282. [20]Field C J, Johnson I, Pratt V C, et al. Glutamine and arginine:immunonutrients for improved health [J]. American College of Sports Medicine,2000,32(7 Suppl.):S377-S388. [21]殷廷,王洪旭,黄璐,等. 海参水煮液多糖和脂肪酸组成的分析[J]. 食品工业,2015,36(12):278-281. [22]Wen J, Hu C, Fan S. Chemical composition and nutritional quality of sea cucumbers [J]. Journal of the Science of Food and Agriculture,2010,90(14):2469-2474. [23]Zhong Y, Khan M A, Shahidi F. Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa) [J]. Journal of Agricultural and Food Chemistry,2007,55(4):1188-1192. [24]姜健,杨宝灵,邰阳. 海参资源及其生物活性物质的研究[J]. 生物技术通讯,2004,15(5):537-540. [25]林芳. 八种海参中主要海参皂苷的结构特性研究[D]. 青岛:中国海洋大学,2011. [26]尹利昂. 不同海参多糖的分离纯化及生化性质分析[D]. 青岛:中国海洋大学,2009. [27]赵芹,王静凤,薛勇,等. 3种海参的主要活性成分和免疫调节作用的比较研究[J]. 中国水产科学,2008,15(1):154-159. [28]史青青,霍健聪,俞晓雯,等. 一种舟山海域海参(Pentacta inornata)营养成分分析与评价[J]. 食品工业,2015,36(2):270-273. [29]姜森颢. 红刺参(Apostichopus japonicus)生长、体色和体壁生化成分的初步研究[D]. 青岛:中国海洋大学,2011. [30]赵元凤,吴益春,吕景才,等. 重金属铅在刺参组织的蓄积、分配、排放规律研究[J]. 农业环境科学学报,2008,27(4):1677-1680. [31]赵玲,马红伟,曹荣,等. 10种海参营养成分分析[J]. 食品安全质量检测学报,2016,7(7):2867-2872. [32]刘长琳,王有廷,秦搏,等. 蓬莱玉参(Apostichopus sp.)体壁的营养成分分析及评价[J]. 渔业科学进展,2015,36(5):111-118. [33]刘小芳,薛长湖,王玉明,等. 乳山刺参体壁和内脏营养成分比较分析[J]. 水产学报,2011,35(4):587-593. [34]王磊,陆海霞,陈青. 东海海参(Acaudina molpadioidea)营养成分分析及评价[J]. 食品与发酵工业,2014,40(8):215-218. [35]刘文娟,孙兆跃,任贻超. 三种野生海参体壁的氨基酸含量分析与评价[J]. 氨基酸和生物资源,2016,38(4):5-10. [36]王贵滨,郭振宇,高岳,等. 3种养殖方式下刺参营养成分和功能成分的研究[J]. 大连海洋大学学报,2015,30(2):185-189. [37]刘茜,孙剑锋,孟淑静,等. 不同海参产品中化学物质、氨基酸、脂肪酸和重金属组成对比研究[J]. 食品科技,2016,41(11):133-139. [38]李丹彤,常亚青,吴振海,等. 獐子岛夏秋季野生仿刺参体壁营养成分的分析[J]. 水产科学,2009,28(7):365-369. [39]李忠清,夏斌,王际英,等. 青、白刺参(Apostichopus japonicus)体壁营养成分的比较分析[J]. 渔业科学进展,2016,37(3):101-107. [40]周光东. 东海光参的特性及利用研究[D]. 舟山:浙江海洋大学,2018. [41]董晓弟,潘如佳,王长海. 海地瓜,黑乳参和乌皱辐肛参营养成分对比[J]. 现代食品科技,2013,29(12):2986-2990. [42]楼乔明,王玉明,薛长湖,等. 黑海参脂肪酸的气相色谱/质谱法分析[J]. 海洋科学,2011,35(6):35-38. |
|
|
|