|
|
Analysis of the Karyotype and Banding Patterns of Marbeled Flounder Pseudopleuronectes yokohamae |
ZHAO Zihan1,2, CUI Aijun2, ZHANG Ning3, LIU Xuezhou2, XU Yongjiang2, ZHAO Rixiang3, SUN Zongzhe3 |
1. Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 3. Yantai Zongzhe Marine Technology Co., Ltd., Yantai 265617, China |
|
|
Abstract Marbeled flounder Pseudopleuronectes yokohamae is an important indigenous marine economic fish species in China, and its genetic characteristics remain incompletely understood. To investigate the chromosomal karyotype and banding patterns of P. yokohamae, this study selected 50 individuals (3—4 months old, total length 3—5 cm) as experimental materials. The karyotype of P. yokohamae was studied through the chromosome preparations obtained from dorsal fin tissue by the method of soak in colchicines. Subsequently, the chromosome samples were prepared using a low permeation and Carnoy′s fixation air drying method. We investigated the banding features and morphological characteristics of multiple chromosomes banding pattern (C-banding, Ag-NORs and G-banding). The species exhibits a typical telocentric chromosomal composition, with a karyotype formula of 2n=48t and a chromosomal arm number (NF) of 48. No polyploidy, sex chromosomes, or satellite chromosomes were detected. In the C-banding characteristics, the whole 17th pair of chromosomes bored positive C-banding, the 9th pair of chromosomes showed negative result and the first three pairs of homologous chromosomes exhibited telomeric C-banding, the rest were centromere C-banding. According to the formula, the amount of heretochromatin calculated was 32.05%. P. yokohamae beared a pair of Ag-NORs which was located at the end of long arm of the 2nd chromosome.The size and location of G-banding were same in homologous chromosomes, but they were not same in the non-homologous chromosomes. Statistics showed that there were 58 deeply stained bands and 38 slightly stained bands in the chromosome of P. yokohamae, and the 11th pair of chromosomes was slightly stained band. The findings would provide basic data for the genomic research, the origin of the species, the status of evolution, and the classification of the organisms.
|
Received: 14 February 2025
|
|
|
|
|
[1] 李思忠,王惠民.中国动物志:硬骨鱼纲 鲽形目[M]. 北京:科学出版社,1995:214-216. [2] 王绪峨.黄盖鲽人工繁殖的初步观察[J]. 水产科技情报,1982,9(1):21-23. [3] BAZAZ A I, AHMAD I, SHAH T H, et al. Karyomorphometric analysis of fresh water fish species of India, with special reference to cold water fishes of Kashmir Himalayas: a mini review[J]. Caryologia,2022,75(1):109-121. [4] 庄志猛.半滑舌鳎早期发育生物学与种质资源研究[D]. 青岛:中国海洋大学,2006. [5] 王妍妍.星鲽染色体核型及带型的初步研究[D]. 青岛:中国海洋大学,2009. [6] 周丽青,杨爱国,柳学周,等.半滑舌鳎染色体核型分析[J]. 水产学报,2005,29(3):417-419. [7] LEVAN A, FREDGA K, SANDBERG A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas,1964,52(2):201-220. [8] KARAGYAN G, LACHOWSKA D, KALASHIAN M. Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining[J]. Comparative Cytogenetics,2012,6(2):183-197. [9] HOWELL W M, BLACK D A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer:a 1-step method[J]. Experientia,1980,36(8):1014-1015. [10] 王昌留.青岛文昌鱼染色体的核型及带型研究[D]. 青岛:中国海洋大学,2003. [11] 马青,姜晨,周丽青,等.黄带拟鲹染色体核型特征分析[J]. 中国水产科学,2021,28(5):561-568. [12] 王鑫,马浩,祝东梅,等.杂交鲌“先锋1号” 染色体组型分析和DNA含量测定[J]. 水产科学,2021,40(3):347-353. [13] 李信,马可馨,郭文轩,等.色林错裸鲤染色体组构成及倍性分析[J]. 水产科学,2024,43(2):297-303. [14] 喻子牛,孔晓瑜,谢宗墉.山东近海21种经济鱼类的核型研究[J]. 中国水产科学,1995,2(2):1-6. [15] PARK I S, LEE J S. Cytogenetical study of fishes from Coastal area in Jo Island, Busan, Korea Ⅰ. Parapercis sexfasciata (Temminck et Schlegel), Sebastiscus marmoratus (Cuvier) and Pleuronectes yokohamae(Günther)[J]. The Genetics Society of Korea, 2005, 27(1):41-45. [16] KHENSUWAN S, DE MENEZES CAVALCANTE SASSI F, ROSA DE MORAES R L, et al. Chromosomes of Asian cyprinid fishes:novel insight into the chromosomal evolution of labeoninae (Teleostei, Cyprinidae)[J]. PLoS One,2024,19(2):e0292689. [17] 李树深.细胞水平的分类学——细胞分类学[J]. 生物学通报,1986,21(8):1-4. [18] 朱传坤,潘正军.中国鲇形目鱼类核型研究进展[J]. 水产学报,2022,46(4):657-673. [19] 李鹏飞,刘萍,柳学周.漠斑牙鲆染色体组型研究[J]. 海洋水产研究,2007,28(4):26-30. [20] 徐冬冬,尤锋,王波,等.星斑川鲽染色体核型分析[J]. 海洋科学进展,2008,26(3):377-380. [21] 徐冬冬,尤锋,楼宝,等.条石鲷雌雄鱼核型及C-带的比较分析[J]. 水生生物学报,2012,36(3):552-557. [22] SUPIWONG W, WONGCHANTRA P, THONGNETR W, et al. Comparative cytogenetic analysis of fishes in the genus Trichopodus (Osphronemidae) in Thailand[J]. Biodiversitas Journal of Biological Diversity,2021,22(7):3029-3036. [23] DE CARVALHO R A, DIAS A L. Karyotypic characterization of Iheringichthys labrosus (Pisces, Pimelodidae):C-, G- and restriction endonuclease banding[J]. Genetics and Molecular Research,2005,4(4):663-667. [24] 陈友铃,郑翠芳,汪彦愔,等.金曼龙鱼的核型和C-带[J]. 福建农业学报,2007,22(1):46-49. [25] MIKLOS G L, GILL A C. Nucleotide sequences of highly repeated DNAs;compilation and comments[J]. Genetical Research,1982,39(1):1-30. [26] BARBY F F, BERTOLLO L A C, DE OLIVEIRA E A, et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH)[J]. Scientific Reports,2019,9(1):1112. [27] DE SOUZA F H S, DE M C SASSI F, FERREIRA P H N, et al. Integrating cytogenetics and population genomics:allopatry and neo-sex chromosomes may have shaped the genetic divergence in the Erythrinus erythrinus species complex (Teleostei, Characiformes)[J]. Biology,2022,11(2):315. [28] 刘永山,柳学周,史宝,等.黄条鰤染色体多种显带的形态特征分析[J]. 水产学报,2018,42(9):1338-1347. [29] ZALEŚ NA A, FLOREK M, RYBACKI M, et al. Variability of NOR patterns in European water frogs of different genome composition and ploidy level[J]. Comparative Cytogenetics,2017,11(2):249-266. [30] DO PRADO F D, NUNES T L, SENHORINI J A, et al. Cytogenetic characterization of F1, F2 and backcross hybrids of the Neotropical catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum (Pimelodidae, Siluriformes)[J]. Genetics and Molecular Biology,2012,35(1):57-64. [31] DOS SANTOS GUIMARÃES A, MACIEL L A M, DE SOUZA M F B, et al. Karyotypic and molecular analysis of Pterygoplichthys pardalis (castelnau 1855) from the lower Amazon River[J]. Animals,2023,13(9):1533. [32] DEGRANDI T M, PITA S, PANZERA Y, et al. Karyotypic evolution of ribosomal sites in buffalo subspecies and their crossbreed[J]. Genetics and Molecular Biology,2014,37(2):375-380. [33] 梁雨婷,隋燚,庄子昕,等.杂交三倍体泥鳅×二倍体泥鳅杂交后代胚胎染色体组构成的研究[J]. 大连海洋大学学报,2018,33(4):477-480. [34] WANG B W, LI J N, DONG J J, et al. Atomic force microscopy imaging of the G-banding process of chromosomes[J]. Applied Nanoscience,2021,11(1):249-255. [35] 王佳君,胡文革,孔磊.准噶尔雅罗鱼染色体核型及带型的初步研究[J]. 动物学杂志,2010,45(6):120-126. [36] 孔磊.新疆裸重唇鱼染色体的核型及带型研究[D]. 石河子:石河子大学,2010. |
[1] |
LI Xin, MA Kexin, GUO Wenxuan, LI Yifan, YANG Yueyao, ZHOU Ziyu, LIU Haiping, XIAO Shijun, ZHOU He. Karyotype and Ploidy Analysis of Gymnocypris selincuoensis[J]. Fisheries Science, 2024, 43(2): 297-303. |
|
|
|
|