|
|
雨生红球藻积累虾青素的分子基础与人工诱导调控研究进展 |
窦勇1, 吴琳1, 闫永芳1, 任虹烨1, 陈家宇1, 乔之怡1, 翟胜利2, 周文礼1 |
1.天津农学院 水产学院,天津市水产生态及养殖重点实验室,天津 300384; 2.天津现代晨辉科技集团,天津 301802 |
|
A Review: Research Advances on Molecular Basis and Artificially Induced Regulation of Astaxanthin Accumulation in Green Alga Haematococcus pluvialis |
DOU Yong1, WU Lin1, YAN Yongfang1, REN Hongye1, CHEN Jiayu1, QIAO Zhiyi1, ZHAI Shengli2, ZHOU Wenli1 |
1. Tianjin Key Laboratory for Aquaculture Ecology and Cultivation, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China; 2. Tianjin Modern Chenhui Technology Group, Tianjin 301802, China |
引用本文: |
窦勇, 吴琳, 闫永芳, 任虹烨, 陈家宇, 乔之怡, 翟胜利, 周文礼. 雨生红球藻积累虾青素的分子基础与人工诱导调控研究进展[J]. 水产科学, 2021, 40(5): 786-793.
DOU Yong, WU Lin, YAN Yongfang, REN Hongye, CHEN Jiayu, QIAO Zhiyi, ZHAI Shengli, ZHOU Wenli. A Review: Research Advances on Molecular Basis and Artificially Induced Regulation of Astaxanthin Accumulation in Green Alga Haematococcus pluvialis. Fisheries Science, 2021, 40(5): 786-793.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.20029 或 http://www.shchkx.com/CN/Y2021/V40/I5/786 |
[1]张春辉.促进雨生红球藻不动细胞累积虾青素的代谢规律研究[D].北京:中国科学院大学,2019:8-9. [2]Fang N, Wang C K, Liu X F, et al. De novo synthesis of astaxanthin: from organisms to genes[J].Trends in Food Science and Technology,2019,92:162-171. [3]Fang L, Zhang J K, Fei Z N, et al. Chlorophyll as key indicator to evaluate astaxanthin accumulation ability of Haematococcus pluvialis[J].Bioresources and Bioprocessing,2019,6(1):1-7. [4]Wells M L, Potin P, Craigie J S, et al. Algae as nutritional and functional food sources:revisiting our understanding[J].Journal of Applied Phycology,2017,29(2):949-982. [5]苏芳.类胡萝卜素在藻虾蟹鱼中的结构分布特征及虾青素异构化研究[D].北京:中国科学院大学,2018:3-15. [6]Saha M, Goecke F, Bhadury P. Minireview: algal natural compounds and extracts as antifoulants[J].Journal of Applied Phycology,2018,30(3):1859-1874. [7]章真.雨生红球藻异养细胞光诱导积累虾青素工艺的优化与放大[D].上海:华东理工大学,2016:1-5. [8]Khoo K S, Lee S Y, Ooi C W, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J].Bioresource Technology,2019,288:121606. [9]Zhong Y J, Huang J C, Liu J, et al. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis[J].Journal of Experimental Botany,2011,62(10):3659-3669. [10]Shah M M R, Liang Y M, Cheng J J, et al. Astaxanthin-producing green microalga Haematococcus pluvialis:from single cell to high value commercial products[J].Frontiers in Plant Science,2016,7:531. [11]Grünewald K, Hirschberg J, Hagen C. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis[J].The Journal of Biological Chemistry,2001,276(8):6023-6029. [12]Grünewald K, Hagen C. β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoids in Haematococcus pluvialis[J].Journal of Applied Phycology,2001,13(1):89-93. [13]Chen G Q, Wang B B, Han D X, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis(Chlorophyceae)[J].The Plant Journal,2015,81(1):95-107. [14]Goncalves E C, Johnson J V, Rathinasabapathi B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29[J].Planta,2013,238(5):895-906. [15]姜思,佟少明.雨生红球藻虾青素合成研究进展[J].生物工程学报,2019,35(6):988-997. [16]Recht L, Töpfer N, Batushansky A, et al. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis[J].The Journal of Biological Chemistry,2014,289(44):30387-30403. [17]Zhang C H, Liu J G, Zhang L T. Cell cycles and proliferation patterns in Haematococcus pluvialis[J].Chinese Journal of Oceanology and Limnology,2017,35(5):1205-1211. [18]Roth M S, Cokus S J, Gallaher S D, et al. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production[J].PNAS,2017,114(21):E4296-E4305. [19]Huang L D, Gao B Y, Wu M M, et al. Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in Haematococcus pluvialis JNU35[J].Biotechnology for Biofuels,2019,12(1):1-20. [20]Ding W, Zhao Y T, Xu J W, et al. Melatonin:a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis[J].Journal of Agricultural and Food Chemistry,2018,66(29):7701-7711. [21]Luo Q L, Bian C, Tao M, et al. Genome and transcriptome sequencing of the astaxanthin-producing green microalga, Haematococcus pluvialis[J].Genome Biology and Evolution,2019,11(1):166-173. [22]Wei W, Liang C W, Qin S. Functional analysis of the promoter of bkt encoding beta-carotene ketolase in Haematococcus pluvialis[J]. 水生生物学报,2006,30(6):747-751. [23]孟春晓.雨生红球藻中虾青素合成关键酶基因的顺式作用元件研究[D].青岛:中国科学院海洋研究所,2005:21-96. [24]Gao Z Q, Meng C X, Ye N H. Three 5′-flanking regions of crtO encoding β-carotene oxygenase in Haematococcus pluvialis[J]. Marine Science Bulletin,2010,12(1):59-64. [25]宁晶晶.雨生红球藻miRNA转录组的分析及miRNA-TF共调控网络的研究[D].深圳:深圳大学,2018:15-73. [26]张克亚,卿人韦,柳科欢,等.缺氮胁迫下雨生红球藻虾青素积累过程中的基因组MSAP分析[J].广西植物,2018,38(9):1155-1163. [27]崔红利,陈军,侯义龙,等.真核微藻蓝光受体及其功能研究进展[J].生物技术通报,2017,33(4):51-62. [28]张宏江,杭伟,马浩天,等.雨生红球藻UVR8的基因克隆和生物信息学分析[J].西南农业学报,2019,32(9):2025-2032. [29]崔红利,陈军,王林萍,等.雨生红球藻PHOT的基因克隆和生物信息学分析[J].西南农业学报,2017,30(12):2639-2647. [30]魏琪瑶,徐晨晨,王美艳,等.光遗传学工具的开发及其应用研究[J].生物工程学报,2019,35(12):2238-2256. [31]顾文辉.积累类胡萝卜素的绿藻类囊体膜蛋白组学研究[D].北京:中国科学院大学,2014:27-100. [32]范勇,于广欣,汪乐霓,等.雨生红球藻质体球滴结构蛋白基因的克隆与原核表达[J].水生生物学报,2012,36(4):640-645. [33]王坤鹏.雨生红球藻的转录组测序及乙酰转移酶基因的克隆和分析[D].深圳:深圳大学,2017:11-66. [34]Liu C, Yu H S, Li L G. SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana[J].PLoS Genetics,2019,15(1):e1007928. [35]任丽,张永刚,马睿,等.代谢组学及其在微藻研究中的应用[J].微生物学通报,2018,45(1):166-172. [36]Lv H, Xia F, Liu M, et al. Metabolomic profiling of the astaxanthin accumulation process induced by high light in Haematococcus pluvialis[J].Algal Research,2016,20:35-43. [37]Ding W, Cui J, Zhao Y T, et al. Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation[J].Bioresource Technology,2019,285:121334. [38]侯冬梅. 雨生红球藻高产虾青素的光诱导工艺研究[D].上海:华东理工大学,2014:8-56. [39]江红霞,雷梦云,林雄平,等.光照胁迫对雨生红球藻虾青素积累和抗氧化活性的影响[J].现代食品科技,2015,31(10):215-221,233. [40]Ma R J, Thomas-Hall S R, Chua E T, et al. Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different LED lighting conditions[J].Bioresource Technology,2018,250:591-602. [41]董庆霖,赵学明,邢向英,等.盐胁迫诱导雨生红球藻合成虾青素的机理[J].化学工程,2007,35(1):45-47. [42]蒋霞敏,柳敏海,沈芝叶.温度、光照与盐度对雨生红球藻诱变株虾青素累积的调控[J].中国水产科学,2005,12(6):714-719. [43]Harker M, Tsavalos A J, Young A J. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis[J].Bioresource Technology,1996,55(3):207-214. [44]黄水英,齐安翔,李哲,等.几种胁迫方式对雨生红球藻积累虾青素影响的初步研究[J].海洋科学集刊,2009(1):144-151. [45]Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus pluvialis[J].Plant and Cell Physiology,1991,32(7):1077-1082. [46]江红霞,林雄平,轩文娟. 盐胁迫对雨生红球藻虾青素累积、虾青素合成相关酶基因表达和抗氧化指标的影响[J]. 中国水产科学,2017,24(6):1342-1353. [47]杨瑾,王铭,李涛,等.氮胁迫对雨生红球藻色素积累与抗氧化系统的影响[J].植物生理学报,2011,47(2):147-152. [48]庄惠如,施巧琴,卢海声,等.营养胁迫对雨生红球藻虾青素累积的影响[J].水生生物学报,2000,24(3):208-212. [49]李涛.营养对雨生红球藻Haematococcus pluvialis CG-11生长的影响及培养基优化研究[D].广州:暨南大学,2009:12-58. [50]李嘉仪,窦勇,邵蓬,等.响应面法优化雨生红球藻产虾青素培养条件[J].天津农学院学报,2019,26(3):57-61. [51]Su Y X, Wang J X, Shi M L, et al. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions[J].Bioresource Technology,2014,170:522-529. [52]陶云莹.四种环境因子对雨生红球藻(Haematococcus plivialis)生长、虾青素及内源激素积累的影响[D].青岛:中国海洋大学,2015:12-66. [53]Wan M X, Zhang Z, Wang J, et al. Sequential heterotrophy-dilution-photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin[J]. Bioresource Technology,2015,198:557-563. [54]李珂.核诱变及高碳诱导提高雨生红球藻生长固碳速率和虾青素含量[D].杭州:浙江大学,2018:34-45. [55]刘京华.基于生物光谱对等离子体诱变雨生红球藻机理及突变体快速筛选方法的研究[D].合肥:中国科学技术大学,2016:31-69. [56]田燕.激光辐照微藻生物学效应及其诱变育种的研究[D].福州:福建师范大学,2008:19-97. [57]刘峰.雨生红球藻优良藻株的诱变选育及其培养基的氮磷浓度的优化[D].青岛:中国海洋大学,2015:16-75. [58]Chen Z, Chen J, Liu J H, et al. Transcriptomic and metabolic analysis of an astaxanthin-hyperproducing Haematococcus pluvialis mutant obtained by low-temperature plasma (LTP) mutagenesis under high light irradiation[J].Algal Research,2020,45:101746. [59]Kim J Y, Lee C, Jeon M S, et al. Enhancement of microalga Haematococcus pluvialis growth and astaxanthin production by electrical treatment[J].Bioresource Technology,2018,268:815-819. [60]沈国明,牛健康,陆开形,等.雨生红球藻诱变后生长速率和超微结构的变化[J].核农学报,2015,29(4):623-628. [61]孙延红.雨生红球藻诱变育种及突变株的筛选[D].青岛:中国科学院海洋研究所,2006:17-43. [62]Cheng J, Li K, Yang Z B, et al. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress[J].Bioresource Technology,2016,204:49-54. [63]Christian D, Zhang J, Sawdon A J, et al. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination[J].Bioresource Technology,2018,256:548-551. [64]陈俊琳.碳源对雨生红球藻生长和虾青素积累的影响及培养条件的优化[D].青岛:中国海洋大学,2015:7-65. [65]尚敏敏,赵永腾,赵鹏,等.黄腐酸对雨生红球藻虾青素的积累和CHY基因表达量影响[J].水生生物学报,2016,40(3):488-492. [66]岳陈陈,丁巍,李涛,等.褪黑素对非生物胁迫下雨生红球藻中虾青素积累的影响[J].水生生物学报,2018,42(5):1043-1049. [67]Ding W, Li Q Q, Han B Y, et al. Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole[J].Bioresource Technology,2019,292:122002. [68]Liu Y H, Alimujiang A, Wang X, et al. Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis[J].Bioresource Technology,2019,289:121720. [69]Lu Y D, Jiang P, Liu S F, et al. Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis[J].Bioresource Technology,2010,101(16):6468-6474. [70]Kobayashi M, Kakizono T, Nagai S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis[J].Applied and Environmental Microbiology,1993,59(3):867-873. [71]于馨恒.化学诱导剂对雨生红球藻合成虾青素的影响及其机理研究[D].天津:天津大学,2015:18-55. [72]Li Y G, Cui D D, Zhuo P L, et al. A new approach to promote astaxanthin accumulation via Na2WO4 in Haematococcus pluvialis[J].Journal of Oceanology and Limnology,2019,37(1):176-185. |
[1] |
张立颖, 赵萌, 李文通, 袁丁, 杨贵强. 投喂虾青素对哲罗鲑虾青素含量和抗氧化力的影响[J]. 水产科学, 2021, 40(1): 89-95. |
[2] |
马骏,李勇,张静,娄雅楠,赵宁宁. 3种非营养性抗氧化剂在水产动物中的研究进展[J]. 水产科学, 2018, 37(3): 414-420. |
[3] |
刘洋,郝若伊,夏俪宁,潘锦锋. 鲑鱼肉和饲料中类胡萝卜素的分析方法[J]. 水产科学, 2017, 36(3): 274-281. |
[4] |
赵樑,王锡昌,吴旭干. 饲料中虾青素对水产动物品质影响的研究进展[J]. 水产科学, 2016, 35(4): 440-445. |
[5] |
江红霞,林雄平,雷梦云,孔祥会. 光周期对雨生红球藻生物量、虾青素累积和抗氧化能力的影响[J]. 水产科学, 2015, (9): 605-609. |
[6] |
孟春晓,高政权,王依涛,罗韬,叶乃好. 影响雨生红球藻中虾青素积累条件的研究进展[J]. 水产科学, 2011, 30(2): 118-121. |
[7] |
孟春晓,高政权,王依涛,罗韬,叶乃好. 植物生长调节剂920对雨生红球藻中虾青素积累的影响[J]. 水产科学, 2010, 29(8): 469-472. |
[8] |
王丽丽,李惠咏,龚一富. 花生四烯酸对雨生红球藻细胞生长和虾青素含量的影响[J]. 水产科学, 2010, 29(3): 142-146. |
[9] |
孟春晓,高政权,王依涛,罗韬,叶乃好. 雨生红球藻中虾青素提取方法研究现状[J]. 水产科学, 2010, 29(12): 745-748. |
[10] |
裴素蕊,管越强,马云婷. 饲料中添加虾青素对凡纳滨对虾生长、存活和抗氧化能力的影响[J]. 水产科学, 2009, 28(3): 126-129. |
[11] |
崔宝霞,钟方旭. 植物生长调节剂对雨生红球藻细胞增殖及虾青素积累的影响[J]. 水产科学, 2008, 27(9): 478-482. |
[12] |
许友卿,丁兆坤. 使水产动物调节合成所需的虾青素[J]. 水产科学, 2008, 27(9): 494-497. |
[13] |
高政权,孟春晓,刁英英. 施用水杨酸对雨生红球藻中虾青素积累的影响[J]. 水产科学, 2007, 26(7): 377-380. |
[14] |
孟春晓,高政权. 外源赤霉素对雨生红球藻中虾青素积累的影响[J]. 水产科学, 2007, 26(5): 249-1. |
[15] |
刘伟成,李明云,蒋霞敏,张祖兴,应仲富. Cu2+、Zn2+、Co2+对雨生红球藻生长的影响[J]. 水产科学, 2006, 25(6): 283-286. |
|
|
|
|