Effects of Dietary Radix Glycyrrhizae Powder on Antioxidant Capacity of Asian Seabass Lates calcarifer under Low Salinity Stress
CHEN Xu, ZUO Tao, ZHOU Shengjie, YANG Rui, YU Gang, QIN Chuanxin, MA Zhenhua
1. Tropical Fisheries Research and Development Center/Sanya Tropical Fisheries Research Institute, South China Sea Fisheries Research Institute, ChineseAcademy of Fishery Sciences, Sanya 572018, China; 2. Key Laboratory of South China Sea Fishery Resource Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Abstract:In order to explore changes in the antioxidant capacity of Asian seabass Lates calcarifer under low-salt stress after feeding Radix Glycyrrhizae, Asian seabass with body weight of (13.89±2.50) g were reared in a 500 L fiberglass bucket and fed diets containing 0 (group 1), 10 (group 2), 30 (group 3) and 50 g/kg (group 4) of Radix Glycyrrhizae powder for 56 days at water temperature of 28.5 ℃ and salinity of 32.1. At the end of the culture, Asian seabass with body weight of (28.51±3.47) g was transferred to 100 L of freshwater plastics buckets filled with tap water for 24 hours, and then activities and contents of antioxidant-related enzymes were determined. The results showed that the activities of serum catalase and total antioxidant capacity in group 1 (control) were improved in varying degrees during the experiment. At the end of the low salinity stress, the activity of lysozyme was found to be increased with the increase in Radix Glycyrrhizae powder doses, the amount of malondialdehyde to be decreased; comparing to the treatment, and the activity of glutathione peroxidase and the amount of malondialdehyde to be decreased significantly (P<0.05). The activities of liver total superoxide dismutase, and peroxidase and total antioxidant capacity were decreased gradually with the increase in dietary Radix Glycyrrhizae powder content (P<0.05). Furthermore, the activities of peroxidase and total antioxidant capacity and the amount of malondialdehyde in each group after the experiment were significantly higher than ever before, while the activity of glutathione peroxidase was decreased. Except for group 2, the activity of Na+/K+-ATPase in gills in other groups after the experiment were significantly lower than ever before (P<0.05). In conclusion, the dietary Radix Glycyrrhizae powder can enhance the body vitality, anti-stress and anti environmental stress capabilities of juvenile Asian seabass.
[1]陈旭,王一福,周胜杰,等.低温胁迫下甘草对尖吻鲈幼鱼血清和肝脏免疫酶及鳃Na+-K+-ATP酶活性的影响[J].中国渔业质量与标准,2020,10(5):18-24. [2]蔡然,陈立敏,辛颖,等.盐度胁迫对尼罗罗非鱼免疫相关指标的影响[J].水产学报,2020,44(6):978-986. [3]AHMMED M K, AHMMED F, KABIR K A, et al. Biochemical impacts of salinity on the catfish, Heteropneustes fossilis(Bloch, 1794), and possibility of their farming at low saline water[J].Aquaculture Research,2017,48(8):4251-4261. [4]冉凤霞,金文杰,黄屾,等.盐度变化对鱼类影响的研究进展[J].西北农林科技大学学报(自然科学版),2020,48(8):10-18. [5]曼琼,杨志军,邓毅,等.甘草内生菌的鉴定与药理作用和活性成分研究进展[J].中国临床药理学杂志,2018,34(9):1125-1128. [6]蔡广知,赵凌,王莎莎,等.甘草药材等级标准分析[J].中国实验方剂学杂志,2019,25(10):148-153. [7]ALAGAWANY M, ELNESR S S, FARAG M R, et al. Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry:current knowledge and prospects[J].Animals,2019,9(8):536. [8]包芳,李羽涵,杨志刚.甘草代谢组学的研究进展[J].中草药,2018,49(19):4662-4669. [9]NAZARI S, RAMESHRAD M, HOSSEINZADEH H. Toxicological effects of Glycyrrhiza glabra (licorice):a review[J].Phytotherapy Research,2017,31(11):1635-1650. [10]CARNOVALI M, LUZI L, TERRUZZI I, et al. Liquiritigenin reduces blood glucose level and bone adverse effects in hyperglycemic adult zebrafish[J].Nutrients,2019,11(5):1042. [11]蔡东森,蒋广震,张定东,等.添加甘草次酸的饲料对团头鲂幼鱼肠道消化吸收酶活性和胴体组成的影响[J].江苏农业科学,2015,43(6):212-214. [12]ELABD H, WANG H P, SHAHEEN A, et al. Feeding Glycyrrhiza glabra (liquorice) and Astragalus membranaceus (AM) alters innate immune and physiological responses in yellow perch (Perca flavescens)[J].Fish & Shellfish Immunology,2016,54:374-384. [13]ELABD H, WANG H P, SHAHEEN A, et al. Anti-oxidative effects of some dietary supplements on yellow perch (Perca flavescens) exposed to different physical stressors[J].Aquaculture Reports,2017,8:21-30. [14]翁秦江,李泽鑫,鲁康乐,等.亚硝酸盐胁迫下发酵甘草对斜带石斑鱼血液指标与抗氧化能力的影响[J].饲料研究,2019,42(5):24-27. [15]王文博,陈鹏,刘品,等.甘草在水产养殖中的应用[J].水生生物学报,2020,44(1):231-236. [16]马振华,于刚,孟祥君.尖吻鲈养殖生物学及加工[M].北京:中国农业出版社,2019:1-3. [17]刘亚娟,胡静,周胜杰,等.急性氨氮胁迫对尖吻鲈稚鱼消化酶及抗氧化酶活性的影响[J].南方农业学报,2018,49(10):2087-2095. [18]WILKINSON R J, PATON N, PORTER M J R. The effects of pre-harvest stress and harvest method on the stress response, rigor onset, muscle pH and drip loss in barramundi (Lates calcarifer)[J].Aquaculture,2008,282(1/2/3/4):26-32. [19]孟彬,孙敬锋,吕爱军.发酵中草药在水产养殖中的应用[J].水产科学,2018,37(3):421-426. [20]WANG Q, SHEN J Y, YAN Z T, et al. Dietary Glycyrrhiza uralensis extracts supplementation elevated growth performance, immune responses and disease resistance against Flavobacterium columnare in yellow catfish (Pelteobagrus fulvidraco)[J].Fish & Shellfish Immunology,2020,97:153-164. [21]MOHAMMED E, KAMEL M, EL IRAQI K, et al. Zingiber officinale and Glycyrrhiza glabra, individually or in combination, reduce heavy metal accumulation and improve growth performance and immune status in Nile tilapia, Oreochromis niloticus[J].Aquaculture Research,2020,51(5):1933-1941. [22]王芸,李正,段亚飞,等.红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响[J].南方水产科学,2018,14(1):9-19. [23]邝杰华,马骞,毛非凡,等.低盐胁迫下松江鲈HSPB1、HSPB7和HSPB11基因的表达变化规律[J].中国水产科学,2020,27(5):494-503. [24]周朝伟,朱龙,曾本和,等.饲料蛋白水平对台湾泥鳅幼鱼生长、饲料利用率及免疫酶活性的影响[J].渔业科学进展,2018,39(3):72-79. [25]张晨捷,张艳亮,彭士明,等.不同维生素E水平饲料对云纹石斑鱼幼鱼低盐胁迫前后抗氧化和渗透压调节功能的比较[J].水产学报,2015,39(11):1679-1689. [26]董翔飞.乌司他丁联合连续性肾脏替代疗法对MODS患者T-SOD、MDA、T-AOC水平的影响[J].中国药物评价,2020,37(4):295-297. [27]刘玲,陈超,李炎璐,等.短期低盐度胁迫对驼背鲈(♀)×鞍带石斑鱼(♂)杂交子代幼鱼抗氧化及消化生理的影响[J].海洋科学,2018,42(2):78-87. [28]张晨捷,张艳亮,高权新,等.低盐胁迫对黄姑鱼幼鱼肝脏抗氧化功能的影响[J].南方水产科学,2015,11(4):59-64. [29]刘波.盐度和投喂频率对卵形鲳鲹生长和生理的影响[D].上海:上海海洋大学,2019:24-26. [30]史宝,柳学周,曹亚男,等.盐度胁迫对黄条鰤消化生理和抗应激指标的影响[J].海洋科学,2020,44(6):64-72. [31]PAITAL B, CHAINY G B. Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata)[J].Ecotoxicology and Environmental Safety,2013,87:33-41. [32]李洪娟,陈刚,郭志雄,等.军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J].海洋学报,2020,42(4):12-19. [33]HOSSAIN M A, AKTAR S, QIN J G. Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia[J].Fish Physiology and Biochemistry,2016,42(6):1571-1580. [34]赵玉蓉,付莹,王红权.α-酮戊二酸对氨氮胁迫下草鱼鳃Na+/K+-ATP酶活性及血液生化指标的影响[J].水生生物学报,2018,42(5):996-1002. [35]胡静,吴开畅,叶乐,等.急性盐度胁迫对克氏双锯鱼幼鱼过氧化氢酶的影响[J].南方水产科学,2015,11(6):73-78. [36]温久福,蓝军南,周慧,等.盐度对花鲈幼鱼消化酶和抗氧化系统的影响[J].动物学杂志,2019,54(5):719-726. [37]张宇婷,杨建,耿龙武,等.盐度胁迫对大鳞鲃抗氧化酶和血清皮质醇的影响[J].渔业科学进展,2021,42(1):56-62. [38]李培伦,刘伟,王继隆,等.盐度对大麻哈鱼幼鱼存活率、鳃ATP酶活力及其组织结构的影响[J].水生生物学报,2020,44(3):562-569. [39]CHRISTENSEN E A F, GROSELL M. Behavioural salinity preference of juvenile yellow perch Perca flavescens[J].Journal of Fish Biology,2018,92(5):1620-1626. [40]张晓燕,温海深,张凯强,等.花鲈等渗点分析及海水淡化对Na+/K+/Cl-浓度、Na+-K+-ATP酶活性及基因表达的影响[J].水产学报,2018,42(8):1199-1208. [41]王涛,苗亮,李明云,等.突降盐度胁迫对大黄鱼(Pseudosciaena crocea)血清生理生化及鳃丝Na+/K+-ATP酶活性的影响[J].海洋与湖沼,2013,44(2):421-426. [42]王雯,温久福,区又君,等.急性低盐胁迫对斜带石斑鱼幼鱼存活、血清离子浓度和内分泌激素水平的影响[J].海洋渔业,2016,38(6):623-633. [43]丁炜东,曹丽萍,曹哲明,等.氨氮胁迫对翘嘴鳜幼鱼鳃、消化道酶活力的影响[J].南方水产科学,2020,16(3):31-37.