Influence of Different Diets on Intestinal Histological Morphologic Structure of Largemouth Bass Micropterus salmoides
OU Hongxia1, WANG Guangjun1,2, LI Zhifei1, YU Deguang1, GONG Wangbao1
1. Key Laboratory of Tropical & Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fishery Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510380, China; 2. Guangdong Ecological Remediation Research Center of Aquaculture Pollution, Guangzhou 510380, China
Abstract:Largemouth bass Micropterus salmoides with an initial body weight of 1.2—1.3 g was reared in a pond, and fed chilled fish (chilled fish group) and formulated diet feed (feed group) for 8 months until to remarkeable fish when their intestines were taken and investigated histologically to evaluate the influence of different feed on intestinal morphologic structure of largemouth bass. There were lower mucosal thickness and villus height (V) in foregut and hindgut of largemouth bass in feed group than those in chilled fish group, reduction in relatively mucosal thickness by 13.71% (P<0.05) in foregut and by 22.73% in hindgut (P<0.05), decrease by 22.49% in villus height (P<0.05), and by 20.51% in hindgut (P<0.05). The largemouth bass in feed group had higher villus height, increased by 19.07% (P<0.05), in midgut than the fish in chilled fish group (10.72%) did (P<0.05). There were lower mucosa thickness and villus height/crypt depth (V/C ratio) in the largemouth bass in feed group than those in chilled fish group, decrease by 47.40%(P<0.05) in foregut, 7.40% in midgut (P>0.05), and 22.66% in hindgut (P<0.05), decrease in V/C ratio by 42.7% in foregut (P<0.05), 8.7% in midgut (P<0.05), and 56.5% in hindgut (P<0.05). The largemouth bass in feed group had higher crypt depth (C) than the fish in chilled fish group did, increase by 20.49% (P<0.05) in foregut, 19.36% in midgut (P<0.05), and 39.98% in hindgut (P<0.05). The intestinal absorption and absorption function were shown to be decreased in villus height and V/C ratio, and to be deepened in crypt depth in largemouth bass in feed group, indicating that the health of the intestines of the largemouth bass in feed group was damaged.
欧红霞, 王广军, 李志斐, 余德光, 龚望宝. 不同饲料对大口黑鲈肠道组织结构的影响[J]. 水产科学, 2020, 39(6): 902-907.
OU Hongxia, WANG Guangjun, LI Zhifei, YU Deguang, GONG Wangbao. Influence of Different Diets on Intestinal Histological Morphologic Structure of Largemouth Bass Micropterus salmoides. Fisheries Science, 2020, 39(6): 902-907.
[1]涂永锋,宋代军. 鱼类肠道组织结构及其功能适应性[J]. 江西饲料,2004(4):16-19. [2]欧红霞,王广军,谢骏,等.摄食不同饲料对大口黑鲈消化道指数和淀粉酶活性的影响[J].上海海洋大学学报,2018,27(5):674-682. [3]尾崎久雄著.鱼类消化生理(上册) [M].吴尚忠译. 上海:上海科学技术出版社,1985. [4]宋霖,蔡春芳,叶元土,等. 四种植物蛋白对黄颡鱼肠道形态结构的影响[J]. 淡水渔业,2012,42(6):54-60. [5]Heikkinen J, Vielma J, Kemilainen O, et al. Effects of soybean meal based diet on growth performance,gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss)[J].Aquaculture,2006,261(1):259-268. [6]徐革锋,陈侠君,杜佳,等. 鱼类消化系统的结构、功能及消化酶的分布与特性[J]. 水产学杂志,2009,22(4):49-55. [7]李可洲,李宁,黎介寿,等. 短链脂肪酸对大鼠移植小肠形态及功能的作用研究[J]. 世界华人消化杂志,2002,10(6):720-722. [8]刘艳莉,胡毅,钟蕾,等.丁酸对动物肠道健康的影响及水产应用前景[J].水产科学,2019,38(2):276-281. [9]罗辉,周剑,叶华.微生态制剂对鱼类肠道结构和消化酶活性的影响[J].水产科学,2006,25(2):105-108. [10]路纪琪,李仲辉. 乌鳢Ophicephalus argus Cantor消化管的形态学与组织学研究[J]. 河南师范大学学报:自然版,1990,11(3):54-59. [11]迟淑艳,韩凤禄,谭北平,等. 饲料精氨酸水平对斜带石斑鱼幼鱼生长和肠道形态的影响[J]. 水生生物学报,2016,40(2):388-394. [12]Baram D, Adachi R, Medalia O, et al. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells[J]. Journal of Experimental Medicine,1999,189(10):1649-1658. [13]Kato Y, Yu D, Schwartz M Z. Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo[J]. Journal of Pediatric Surgery,1999,34(1):18-20. [14]杨海英,杨在宾,杨维仁,等. 益生素和低聚木糖对断奶仔猪生产性能和肠道形态学影响研究[J]. 中国粮油学报,2008,23(1):116-120. [15]Kernéis S, Bogdanova A, Kraehenbuhl J P. Conversion by peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria[J]. Science,1997,277(5328):949-952. [16]王子旭,佘锐萍,陈越,等. 日粮锌硒水平对肉鸡小肠黏膜结构的影响[J]. 中国兽医科技,2003,33(7):18-21. [17]曹崇海. 乌鳢饲喂冰鲜鱼和配合饲料消化道组织及消化酶差异的研究[D]. 杭州:浙江大学,2011. [18]牟明明,蒋余,罗强,等. 配合饲料和冰鲜鲢对大口黑鲈生长、血浆生化指标、抗氧化能力和组织学的影响[J]. 水产学报,2018,42(9):1408-1416. [19]李晋南,徐奇友,王常安,等. 谷氨酰胺及其前体物对松浦镜鲤肠道消化酶活性及肠道形态的影响[J]. 动物营养学报,2014,26(5):1347-1352. [20]张荣斌,曹俊明,黄燕华,等. 低聚木糖对奥尼罗非鱼肠道形态、菌群组成和抗嗜水气单胞菌感染的影响[J]. 上海海洋大学学报,2012,21(2):233-240. [21]杨玉芬,卢德勋,许梓荣,等. 日粮纤维对肥育猪消化道发育和消化酶活性的影响[J]. 福建农业学报,2003,18(1):34-37. [22]Kass M L, van Soest P J, Pond W G, et al. Utilization of dietary fiber from alfalfa by growing swine.1. Apparent digestibility of diet components in specific segments of the gastrointestinal Tract1[J]. Journal of Animal Science,1980,50(1):175-191. [23]Johnson I T, Gee J M. Effect of gel-forming gums on the intestinal unstirred layer and sugar transorpt in vitro[J]. Gut,1981,22(5):398-403. [24]Smith J G, Bergan J B. Molecular and genetic effects of dietary derived butyric acid[J].Food Technology,1995,49(11):87-90. [25]韩正康.家畜营养生理学 [M].北京:农业出版社,1991:16-17. [26]徐光科. 清凉冲剂对鸡肠黏膜结构和黏膜免疫相关细胞的影响[D]. 乌鲁木齐:新疆农业大学,2006. [27]Goodlad R A, Ratcliffe B, Lee C Y, et al. Dietary fibre and the gastrointestinal tract: differing trophic effects on muscle and mucosa of the stomach, small intestine and colon[J]. European Journal of Clinical Nutrition,1995,49(Suppl. 3):178-181.