|
|
生物絮团技术研究进展与应用概述 |
韩佳民, 苏胜齐 |
西南大学 水产学院,渔业资源与环境研究中心,重庆 400715 |
|
A Review of Research Progress and Application of Biofloc Technology |
HAN Jiamin, SU Shengqi |
Research Central of Fishery Resources and Environment, College of Fisheries, Southwest University, Chongqing 400715, China |
[1] CRAB R, DEFOIRDT T, BOSSIER P, et al. Biofloc technology in aquaculture:beneficial effects and future challenges[J].Aquaculture,2012,356/357:351-356. [2] DAUDA A B. Biofloc technology:a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals[J].Reviews in Aquaculture,2020,12(2):1193-1210. [3] AVNIMELECH Y. Biofloc Technology-a practical Guidebook[M]. 2nd ed. Baton Rouge: World Aquaculture Society,2009. [4] AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176(3/4):227-235. [5] EKASARI J, ANGELA D, WALUYO S H, et al. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals[J].Aquaculture,2014,426/427:105-111. [6] SCHRYVER P D, CRAB R, DEFOIRDT T, et al. The basics of bio-flocs technology:the added value for aquaculture[J].Aquaculture,2008,277(3/4):125-137. [7] 龙丽娜,陆诗敏,刘晃.基于生物絮团技术的养殖系统细菌群落结构研究进展[J].中国农学通报,2019,35(8):146-151. [8] 任利华,李斌,孙国华,等.16S rDNA克隆文库解析仿刺参(Apostichopus japonicus)苗种培育池中生物絮团的细菌群落结构[J].海洋与湖沼,2015,46(1):197-205. [9] WEI Y F, LIAO S A, WANG A L. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs[J].Aquaculture,2016,465:88-93. [10] LIU W C, LUO G Z, CHEN W, et al. Effect of no carbohydrate addition on water quality, growth performance and microbial community in water-reusing biofloc systems for tilapia production under high-density cultivation[J].Aquaculture Research,2018,49(7):2446-2454. [11] GOU J W, HONG C U, DENG M, et al. Effect of carbon to nitrogen ratio on water quality and community structure evolution in suspended growth bioreactors through biofloc technology[J].Water,2019,11(8):1640. [12] WEI Y F, WANG A L, LIAO S A. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation[J].Aquaculture,2020,515:734492. [13] 夏耘,郁二蒙,谢骏,等.基于PCR-DGGE技术分析生物絮团的细菌群落结构[J].水产学报,2012,36(10):1563-1571. [14] KHANJANI M H, SHARIFINIA M. Biofloc technology as a promising tool to improve aquaculture production[J].Reviews in Aquaculture,2020,12(3):1836-1850. [15] 陈薇,刘清术,许丽娟,等.两株以亚硝态氮为氮源的异养硝化细菌的分离及鉴定[J].生命科学研究,2012,16(6):489-495. [16] DE SCHRYVER P, VERSTRAETE W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors[J].Bioresource Technology,2009,100(3):1162-1167. [17] MENAGA M, FELIX S, CHARULATHA M, et al. Effect of in situ and ex-situ biofloc on immune response of genetically improved farmed tilapia[J].Fish & Shellfish Immunology,2019,92:698-705. [18] HU X J, CAO Y C, WEN G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J].Aquaculture Research,2017,48(6):2691-2705. [19] DE DAUDA A B, ROMANO N, EBRAHIMI M, et al. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems[J].Aquaculture,2018,483:120-130. [20] DENG M, CHEN J Y, GOU J W, et al. The effect of different carbon sources on water quality, microbial community and structure of biofloc systems[J].Aquaculture,2018,482:103-110. [21] PANIGRAHI A, SARANYA C, SUNDARAM M, et al. Carbon:nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system[J].Fish & Shellfish Immunology,2018,81:329-337. [22] PANIGRAHI A, SUNDARAM M, CHAKRAPANI S, et al. Effect of carbon and nitrogen ratio (C:N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system[J].Aquaculture Research,2019,50(1):29-41. [23] WANG S Y, CUI X P, XU R Y, et al. Effect of carbon and nitrogen ratio control on Artemia growth, water quality, biofloc microbial diversity under high salinity and zero-water exchange culture condition[J].Journal of Oceanology and Limnology,2019,37(5):1768-1776. [24] SHANG Q, TANG H F, WANG Y H, et al. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture[J].Science of the Total Environment,2018,615:681-690. [25] DAUDA A B, ROMANO N, EBRAHIMI M, et al. Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system[J].Fisheries Science,2017,83(6):1037-1048. [26] KHANJANI M H, SAJJADI M M, ALIZADEH M, et al. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system:the effect of adding different carbon sources[J].Aquaculture Research,2017,48(4):1491-1501. [27] MIAO S Y, SUN L S, BU H Y, et al. Effect of molasses addition at C∶N ratio of 20∶1 on the water quality and growth performance of giant freshwater prawn (Macrobrachium rosenbergii)[J].Aquaculture International,2017,25(4):1409-1425. [28] BAKHSHI F, NAJDEGERAMI E H, MANAFFAR R, et al. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings[J].Aquaculture,2018,484:259-267. [29] EMERENCIANO M, BALLESTER E L C, CAVALLI R O, et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817)[J].Aquaculture Research,2012,43(3):447-457. [30] AVNIMELECH Y, KOCHBA M. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using 15N tracing[J].Aquaculture,2009,287(1/2):163-168. [31] AZIM M E, LITTLE D C. The biofloc technology (BFT) in indoor tanks:water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus)[J].Aquaculture,2008,283(1/2/3/4):29-35. [32] MIRZAKHANI N, EBRAHIMI E, JALALI S A H, et al. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C∶N ratios[J].Aquaculture,2019,512:734235. [33] ZHANG M M, LI Y, XU D H, et al. Effect of different water biofloc contents on the growth and immune response of gibel carp cultured in zero water exchange and no feed addition system[J].Aquaculture Research,2018,49(4):1647-1656. [34] ROMANO N, DAUDA A B, IKHSAN N, et al. Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles[J].Aquaculture Research,2018,49(12):3691-3701. [35] CRAB R, CHIELENS B, WILLE M, et al. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae[J].Aquaculture Research,2010,41(4):559-567. [36] KAMILYA D, DEBBARMA M, PAL P, et al. Biofloc technology application in indoor culture of Labeo rohita (Hamilton, 1822) fingerlings:the effects on inorganic nitrogen control, growth and immunity[J].Chemosphere,2017,182:8-14. [37] MARTINS M A, POLI M A, LEGARDA E C, et al. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia[J].Aquaculture,2020,514:734517. [38] MIAO S Y, ZHU J Y, ZHAO C Z, et al. Effects of C/N ratio control combined with probiotics on the immune response, disease resistance, intestinal microbiota and morphology of giant freshwater prawn (Macrobrachium rosenbergii)[J].Aquaculture,2017,476:125-133. [39] XU W J, PAN L Q. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J].Aquaculture,2013,412/413:117-124. [40] YU Z, LI L, ZHU R, et al. Effects of bioflocs with different C/N ratios on growth, immunological parameters, antioxidants and culture water quality in Opsariichthys kaopingensis Dybowski[J].Aquaculture Research,2020,51(2):805-815. [41] EKASARI J, HANIF AZHAR M, SURAWIDJAJA E H, et al. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources[J].Fish & Shellfish Immunology,2014,41(2):332-339. [42] CRAB R, LAMBERT A, DEFOIRDT T, et al. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi[J].Journal of Applied Microbiology,2010,109(5):1643-1649. [43] AHMAD H I, VERMA A K, BABITHA RANI A M, et al. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources[J].Aquaculture,2016,457:61-67. [44] ASADUZZAMAN M, WAHAB M A, VERDEGEM M C J, et al. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems[J].Aquaculture,2010,301(1/2/3/4):37-46. [45] ASADUZZAMAN M, WAHAB M A, VERDEGEM M C J, et al. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds[J].Aquaculture,2008,280(1/2/3/4):117-123. [46] EBRAHIMI A, AKRAMI R, NAJDEGERAMI E H, et al. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system[J].Aquaculture,2020,516:734639. [47] FUGIMURA M M S, DOS REIS FLOR H, DE MELO E P, et al. Brewery residues as a source of organic carbon in Litopenaeus schmitti white shrimp farms with BFT systems[J].Aquaculture International,2015,23(2):509-522. [48] HARI B, KURUP B M, VARGHESE J T, et al. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems[J].Aquaculture,2006,252(2/3/4):248-263. [49] LOBATO O S C, DE AZEVEDO SILVA RIBEIRO F, MIRANDA-BAEZA A, et al. Production performance of Litopenaeus vannamei (Boone, 1931) fed with different dietary levels of tilapia processing waste silage reared in biofloc system using two carbon sources[J].Aquaculture,2019,501:515-518. [50] 刘超,翟国威,吕亚军,等.麸皮生物絮团技术在鲢鲤鱼混养鱼塘中的应用[J].环境工程技术学报,2019,9(5):559-565. [51] GOMES VILANI F, SCHVEITZER R, DA FONSECA ARANTES R, et al. Strategies for water preparation in a biofloc system:effects of carbon source and fertilization dose on water quality and shrimp performance[J].Aquacultural Engineering,2016,74:70-75. [52] WANG C, PAN L Q, ZHANG K Q, et al. Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks[J].Aquaculture Research,2016,47(10):3307-3318. [53] ZHAO D H, PAN L Q, HUANG F, et al. Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks[J].Journal of the World Aquaculture Society,2016,47(4):566-576. [54] DO ESPRITO SANTO C M, PINHEIRO I C, DE JESUS G F A, et al. Soybean molasses as an organic carbon source in the farming of Litopenaeus vannamei (Boone, 1931) in a biofloc system[J].Aquaculture Research,2017,48(4):1827-1835. [55] DE DAUDA A B, ROMANO N, CHEN W W, et al. Differences in feeding habits influence the growth performance and feeding efficiencies of African catfish (Clarias gariepinus) and lemon fin barb hybrid (Hypsibarbus wetmorei♂×Barboides gonionotus ♀) in a glycerol-based biofloc technology system versus a recirculating system[J].Aquacultural Engineering,2018,82:31-37. [56] CHEN X Q, LUO G Z, TAN J H, et al. Effects of carbohydrate supply strategies and biofloc concentrations on the growth performance of African catfish (Clarias gariepinus) cultured in biofloc systems[J].Aquaculture,2020,517:734808. [57] LUO G Z, CHEN X Q, TAN J H, et al. Effects of carbohydrate addition strategy and biofloc levels on the establishment of nitrification in biofloc technology aquaculture systems[J].Aquaculture,2020,514:734441. [58] LONG L N, YANG J, LI Y, et al. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus)[J].Aquaculture,2015,448:135-141. [59] LUO G Z, ZHANG N, TAN H X, et al. Efficiency of producing bioflocs with aquaculture waste by using poly-β-hydroxybutyric acid as a carbon source in suspended growth bioreactors[J].Aquacultural Engineering,2017,76:34-40. [60] ZHANG N, LUO G Z, TAN H X, et al. Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source[J].Aquaculture,2016,464:710-717. [61] DU X, ALMEIDA D, SONG D, et al. Effects of organic carbon addition on water quality and phytoplankton assemblages in biofloc technology ponds[J].Aquaculture,2018,497:155-163. [62] 张哲,杨章武,葛辉,等.不同碳源对凡纳滨对虾育苗标粗水体生物絮团的结构、营养成分、细菌群落及其水质的影响[J].水产学报,2019,43(3):639-649. [63] 邓应能,赵培,孙运忠,等.生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J].渔业科学进展,2012,33(2):69-75. [64] 朱锦裕,卜弘毅,胡冲冲,等.泼洒糖蜜对池塘养殖罗氏沼虾生长和水质的影响[J].水产科学,2017,36(2):202-206. [65] 郭小泽,唐艳强,侯玉洁,等.糖蜜对草鱼混养池塘水质和细菌群落结构的影响[J].水产科学,2019,38(5):616-623. [66] BURFORD M A, THOMPSON P J, MCINTOSH R P, et al. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system[J].Aquaculture,2004,232(1/2/3/4):525-537. [67] JIANG W W, REN W J, LI L, et al. Light and carbon sources addition alter microbial community in biofloc-based Litopenaeus vannamei culture systems[J].Aquaculture,2020,515:734572. [68] SAMOCHA T M, PATNAIK S, SPEED M, et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei[J].Aquacultural Engineering,2007,36(2):184-191. [69] DE SOUZA D M, SUITA S M, ROMANO L A, et al. Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a biofloc technology system[J].Aquaculture Research,2014,45(2):270-277. [70] EKASARI J, RIVANDI D R, FIRDAUSI A P, et al. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance[J].Aquaculture,2015,441:72-77. [71] 刘克明,尤宏争,马林,等.不同碳源培养生物絮团对南美白对虾养殖影响试验[J].河北渔业,2019(4):28-30. [72] DE LIMA E C R, DE SOUZA R L, GIRAO P J M, et al. Culture of Nile tilapia in a biofloc system with different sources of carbon[J].Revista Ciência Agronômica,2018,49(3):458-466. [73] SERRA F P, GAONA C A P, FURTADO P S, et al. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei[J].Aquaculture International,2015,23(6):1325-1339. [74] BAKHSHI F, H NAJDEGERAMI E, MANAFFAR R, et al. Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources[J].Aquaculture Research,2018,49(1):393-403. [75] VARGAS-ALBORES F, MARTÍNEZ-CÓRDOVA L R, GOLLAS-GALVÁN T, et al. Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with amaranth and wheat seeds as fouler promoters[J].Aquaculture,2019,500:107-117. [76] MANSOUR A T, ESTEBAN M Á. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus)[J].Fish & Shellfish Immunology,2017,64:202-209. [77] LIU L P, HU Z X, DAI X L, et al. Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system[J].Aquaculture,2014,418/419:79-86. [78] 唐肖峰,刘利平,帅滇,等.碳源对花鳗鲡养殖系统水质及生产性能的影响[J].大连海洋大学学报,2019,34(1):70-79. [79] GARCÍA-RÍOS L, MIRANDA-BAEZA A, COELHO-EMERENCIANO M G, et al. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources:emphasis on commercial applications[J].Aquaculture,2019,502:26-31. [80] HUANG J H, YANG Q B, MA Z H, et al. Effects of adding sucrose on Penaeus monodon (Fabricius, 1798) growth performance and water quality in a biofloc system[J].Aquaculture Research,2017,48(5):2316-2327. [81] KUHN D D, LAWRENCE A L, BOARDMAN G D, et al. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei[J].Aquaculture,2010,303(1/2/3/4):28-33. [82] ZHANG Z, YANG Z W, ZHENG G F, et al. Effects of addition of sucrose and probiotics on whiteleg shrimp Litopenaeus vannamei postlarvae performance, water quality, and microbial community[J].North American Journal of Aquaculture,2020,82(1):43-53. [83] ZHAO P, HUANG J, WANG X H, et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus[J].Aquaculture,2012,354/355:97-106. [84] RAY A J, LOTZ J M. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources[J].Aquacultural Engineering,2014,63:54-61. [85] HOSTINS B, BRAGA A, LOPES D L A, et al. Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a super-intensive biofloc system[J].Aquacultural Engineering,2015,66:62-67. [86] MARTINS G B, TAROUCO F, ROSA C E, et al. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system:water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus)[J].Aquaculture,2017,468:10-17. [87] FURTADO P S, POERSCH L H, WASIELESKY W Jr. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems[J].Aquaculture,2011,321(1/2):130-135. [88] KIM J H, KIM S K, KIM J H. Bio-floc technology application in flatfish Paralichthys olivaceus culture:effects on water quality, growth, hematological parameters, and immune responses[J].Aquaculture,2018,495:703-709. [89] LI L, REN W, LIU C, et al. Comparing trace element concentrations in muscle tissue of marbled eel Anguilla marmorata reared in three different aquaculture systems[J].Aquaculture Environment Interactions,2018,10:13-20. [90] CHEN J H, LIU P, LI Y Q, et al. Effects of dietary biofloc on growth, digestibility, protein turnover and energy budget of sea cucumber Apostichopus japonicus (Selenka)[J].Animal Feed Science and Technology,2018,241:151-162. [91] 李京昊,成永旭,王海锋,等.利用生物絮团技术对克氏原螯虾的养殖效果初探[J].水产学报,2019,43(4):968-977. [92] 孙中勇,李嘉尧,杨筱珍,等.不同条件对中华绒螯蟹扣蟹摄食生物絮团的影响[J].生物学杂志,2017,34(6):32-36. [93] 张秀珍,李斌,白艳艳,等.生物絮团对仿刺参幼参生长与酶活性的影响[J].中国水产科学,2014,21(4):793-799. [94] EKASARI J, SUPRAYUDI M A, WIYOTO W, et al. Biofloc technology application in African catfish fingerling production:the effects on the reproductive performance of broodstock and the quality of eggs and larvae[J].Aquaculture,2016,464:349-356. [95] ADINEH H, NADERI M, KHADEMI HAMIDI M, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density[J].Fish & Shellfish Immunology,2019,95:440-448. [96] NAJDEGERAMI E H, BAKHSHI F, LAKANI F B. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system[J].Fish Physiology and Biochemistry,2016,42(2):457-465. [97] ZHAO Z G, XU Q Y, LUO L, et al. Effect of feed C/N ratio promoted bioflocs on water quality and production performance of bottom and filter feeder carp in minimum-water exchanged pond polyculture system[J].Aquaculture,2014,434:442-448. [98] WANG G J, YU E M, XIE J, et al. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus[J].Aquaculture,2015,443:98-104. [99] 罗文.生物絮团技术在鲫养殖中的研究与应用[D].上海:上海海洋大学,2013. [100] 于哲,吴莉芳,代忠义,等.不同C/N水平生物絮团对黄金鲫生长性能、消化酶活力及养殖水体水质的影响[J].饲料工业,2019,40(22):40-47. [101] 徐晨,李烨,孙启睿,等.生物絮团养殖模式下益生菌添加对异育银鲫生长、消化酶活性及肠道组织结构的影响[J].中国水产科学,2018,25(5):1004-1011. [102] 孙盛明,戈贤平,朱健,等.生物絮团对团头鲂(Megalobrama amblycephala)生长、消化酶和免疫相关酶活性的影响[J].渔业科学进展,2016,37(2):49-55. [103] 李朝兵,王广军,余德光,等.生物絮团对鳙生长、肌肉氨基酸成分及营养评价的影响[J].江苏农业科学,2012,40(11):242-245. [104] VINATEA L, MALPARTIDA J, CARBÓ R, et al. A comparison of recirculation aquaculture systems versus biofloc technology culture system for on-growing of fry of Tinca tinca (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae)[J].Aquaculture,2018,482:155-161. [105] ABU BAKAR N S, MOHD NASIR N, LANANAN F, et al. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing bioflocs technology[J].International Biodeterioration & Biodegradation,2015,102:100-106. [106] GREEN B W. Effect of channel catfish stocking rate on yield and water quality in an intensive, mixed suspended-growth production system[J].North American Journal of Aquaculture,2010,72(2):97-106. [107] 王广军,王一飞,夏耘,等.不同碳氮比对杂交鳢稚鱼生长及养殖水质的影响[J].甘肃农业大学学报,2016,51(4):7-13. [108] AZIM M E, LITTLE D C, BRON J E. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture[J].Bioresource Technology,2008,99(9):3590-3599. [109] LI J W, LIU G, LI C W, et al. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae[J].Aquaculture,2018,495:919-931. [110] 于永霞,罗国芝,刘文畅,等.罗非鱼藻菌共处型生物絮团养殖系统的初步探究[J].淡水渔业,2019,49(5):80-85. [111] 马杭柯,李志辉,赖晓芳,等.不同生物絮团对脊尾白虾高密度养殖水体氨氮的影响[J].水生态学杂志,2019,40(5):68-72. [112] BALLESTER E L C, MARZAROTTO S A, SILVA DE CASTRO C, et al. Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system[J].Aquaculture Research,2017,48(9):4748-4755. [113] NEGRINI C, SILVA DE CASTRO C, BITTENCOU-RT GUIMARAES A, et al. Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system[J].Latin American Journal of Aquatic Research,2017,45(5):891-899. [114] 刘杜娟,潘晓艺,尹文林,等.生物絮团在罗氏沼虾育苗中的应用[J].上海海洋大学学报,2013,22(1):47-53. [115] 叶海斌,王友红,王晓璐,等.生物絮团对金刚虾的生长和非特异性免疫酶活性的实验研究[J].中国海洋大学学报(自然科学版),2018,48(增刊Ⅱ):52-58. [116] KIM S K, PANG Z G, SEO H C, et al. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae[J].Aquaculture Research,2014,45(2):362-371. [117] 朱亦晨,谭洪新,罗国芝.养殖密度对硝化型生物絮团系统中凡纳滨对虾生长和水质的影响[J].上海海洋大学学报,2020,29(1):27-35. [118] EMERENCIANO M, CUZON G, GOGUENHEIM J, et al. Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris[J].Aquaculture Research,2012,44(1):75-85. [119] MAGAÑA-GALLEGOS E, GONZÁLEZ-ZÚÑIGA R, AREVALO M, et al. Biofloc and food contribution to grow-out and broodstock of Farfantepenaeus brasiliensis (Latreille, 1817) determined by stable isotopes and fatty acids[J].Aquaculture Research,2018,49(5):1782-1794. [120] KIM S K, GUO Q, JANG I K. Effect of biofloc on the survival and growth of the postlarvae of three penaeids (Litopenaeus vannamei, Fenneropenaeus chinensis, and Marsupenaeus japonicus) and their biofloc feeding efficiencies, as related to the morphological structure of the third maxilliped[J].Journal of Crustacean Biology,2015,35(1):41-50. [121] KAYA D, GENC M A, AKTAS M, et al. Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes[J].Aquaculture Research,2019,50(10):2760-2768. |
[1] |
周晖, 韩满强, 汤保贵, 伍栩民, 杜书敏, 谭瑞华, 龚汉夫, 林志豪, 何益荀, 钟育麒, 林桂腾. 低温季节凡纳滨对虾室内生物絮团养殖研究[J]. 水产科学, 2022, 41(3): 424-430. |
[2] |
陈晓庆, 罗国芝, 谭洪新, 吴慧芳, 蒙浩焱, 黎爽. 絮体粒径对生物絮团系统中硝化作用的影响[J]. 水产科学, 2021, 40(6): 860-869. |
[3] |
秦海鹏, 杨世平, 王博, 廖栩峥, 胡世康, 赵吉臣, 何子豪, 孙成波. 不同盐度对生物絮团、对虾生长以及酶活性的影响[J]. 水产科学, 2020, 39(3): 400-406. |
[4] |
魏亚南, 张东升, 林青, 孙广伟, 雷兆霖, 张津源, 郭超, 陈济丰, 周玮. 3种水质调控方式下参池沉积物酶活性的比较研究[J]. 水产科学, 2020, 39(2): 193-199. |
[5] |
朱锦裕,卜弘毅,胡冲冲,苗淑彦. 泼洒糖蜜对池塘养殖罗氏沼虾生长和水质的影响[J]. 水产科学, 2017, 36(2): 202-. |
|
|
|
|