Effects of Immunostimullants on Toxin Accumulation,Antioxidant Activity, and Immunity in Blue Mussel Mytilus galloprovincialis
ZHANG Qianru1,2, ZHENG Guanchao1, YANG Yuecong1, ZHAO Huihui1, TAN Zhijun1,3, WU Haiyan1
1. Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 2. Jiangsu Ocean University, Lianyungang 222005, China; 3. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract:To screen for immunomodulators that affect the accumulation of azaspiracids (AZAs) in blue mussel Mytilus galloprovincialis, blue mussels with body weight of(7.14±1.05) g were reared with 333.00 mg/L of vitamin C sodium powder (vitamin C group), 3.00 mg/L emodin (emodin group), and 6.66 mg/L of arachidonic acid (arachidonic acid group) and 333.00 mg/L of astragalus polysaccharide (astragalus polysaccharide group). The toxin and enzyme activities in the visceral tissues of the blue mussel, and the changes in antioxidant function and non-specific immune indices were measured. The results showed that the soft tissue was decreased first in weight and then increased in the mussel fed diets containing the immunomodulators,without effect on the survival rate of the mussel (P>0.05). Except for the arachidonic acid group, there was no significant difference between other treatment groups and the control group (P>0.05). The immunomodulators were all shown to affect the accumulation of toxins in the hepatopancreas, without effect on metabolism. The descending order of the maximal toxin contents in different groups was described as:control group (1235.33 μg/kg)>vitamin C group (1153.12 μg/kg)>emodin group (755.74 μg/kg)>arachidonic acid group (568.72 μg/kg)>astragalus polysaccharides group (141.43 μg/kg), with 61.2% of that in the control group in the emodin group, 46.0% of that in the control group in the arachidonic acid group, and 11.5% of that in the control group in the astragalus polysaccharide group.Arachidonic acid group and astragalus polysaccharides group with significantly reduced toxin accumulation were selected to analyze the changes of their antioxidant enzymes, oxidation products and non-specific immune enzyme activities.The activity of superoxide dismutase in mussel hepatopancreas was found to be increased significantly and the malondialdehyde content to be significantly decreased in the blue mussel fed the diets containing astragalus polysaccharides and arachidonic acid (P<0.05), with increase in the content of non-specific immune marker lysozyme and the activity of acid phosphatase.The findings indicate that arachidonic acid and astragalus polysaccharides significantly enhance the oxidative stress and non-specific immune ability of blue mussel during toxin accumulation.
[1] 李海芳,常亚青,丁君.水产动物免疫增强剂的研究现状及应用前景[J].水产科学,2004,23(10):35-39. [2] 农业农村部渔业渔政管理局.关于发布《水产养殖用药明白纸2022年1、2号》宣传材料的通知[EB/OL]. (2022-11-15)[2023-07-17]. http://www.yyj.moa.gov.cn/gzdt/202211/t20221115_6415528.htm. [3] 王玉堂.鱼类免疫增强剂的种类及研究进展(一)[J].中国水产,2017(11):72-74. [4] 郭鹏,王斌,孙永智,等.水生动物糖类免疫增强剂的研究进展[J].水产研究,2021(2):61-67. [5] WANG W, SUN J, LIU C J, et al. Application of immunostimulants in aquaculture:current knowledge and future perspectives[J]. Aquaculture Research,2017,48(1):1-23. [6] HARIKRISHNAN R, BALASUNDARAM C, HEO M S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish[J]. Aquaculture,2011,317(1/2/3/4):1-15. [7] 李腾,郭慧,卢怡凝,等.免疫增强剂在水产动物中的应用研究进展[J].河北渔业,2023(5):34-40. [8] SRIVASTAVAP K, PANDEY A K. Role of immunostimulants in immune responses of fish and shellfish[J].Biochemical and Cellular Archives,2015,15(1):47-73. [9] 黄助祥.免疫增强剂在水产养殖中的应用[J].江西水产科技,2020(2):39-40. [10] FUREY A, O′DOHERTY S, O′CALLAGHAN K, et al. Azaspiracid poisoning (AZP) toxins in shellfish:toxicological and health considerations[J]. Toxicon:Official Journal of the International Society on Toxinology,2010,56(2):173-190. [11] 谭志军,吴海燕,郭萌萌,等.脂溶性贝类毒素安全评价与检测技术研究进展[J].中国水产科学,2013,20(2):467-479. [12] JAUFFRAIS T, MARCAILLOU C, HERRENKNECHT C, et al. Azaspiracidaccumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum[J]. Toxicon:Official Journal of the International Society on Toxinology,2012,60(4):582-595. [13] HESS P, TWINER M J, KILCOYNE J, et al. Azaspiracidtoxins:toxicological profile[M]//GOPALAKRISHNAKONE P, HADDAD JR V, KEM W R, et al. Marine and Freshwater Toxins. Dordrecht:Springer,2015:1-19. [14] LOUZAO M C, VILARIÑO N, VALE C, et al. Current trends and new challenges in marine phycotoxins[J]. Marine Drugs,2022,20(3):198. [15] European Food Safety Authority. Marine biotoxins in shellfish-okadaic acid and analogues-scientific opinion of the panel on contaminants in the food chain[J]. EFSA Journal,2008,6(1):589. [16] JI Y, QIU J B, XIE T, et al. Accumulation and transformation of azaspiracids in scallops (Chlamys farreri) and mussels (Mytilus galloprovincialis) fed with Azadinium poporum, and response of antioxidant enzymes[J]. Toxicon,2019,158:S42-S43. [17] GIULIANI M E, ACCORONI S, MEZZELANI M, et al. Biological effects of the azaspiracid-producing dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea[J]. Marine Drugs,2019,17(10):595. [18] KROCK B, TILLMANN U, WITT M, et al. Azaspiracid variability of Azadinium poporum (Dinophyceae) from the China Sea[J]. Harmful Algae,2014,36:22-28. [19] GU H F, LUO Z H, KROCK B, et al. Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea[J]. Harmful Algae,2013,21/22:64-75. [20] FAGGIO C, TSARPALI V, DAILIANIS S. Mussel digestive gland as a model tissue for assessing xenobiotics:an overview[J]. The Science of the Total Environment,2018,636:220-229. [21] O′DRISCOLL D, KRABÁKOVÁ Z, JAMES K J. Confirmation of extensive natural distribution of azaspiracids in the tissue compartments of mussels (Mytilus edulis)[J]. Toxicon:Official Journal of the International Society on Toxinology,2014,92:123-128. [22] 吴芳丽,王月,尚跃勇,等.水生无脊椎动物血淋巴细胞分类及免疫研究进展[J].大连海洋大学学报,2016,31(6):696-704. [23] BOUALLEGUI Y. Immunity in mussels:an overview of molecular components and mechanisms with a focus on the functional defenses[J]. Fish & Shellfish Immunology, 2019,89:158-169. [24] QIU J B, MA F F, FAN H, et al. Effects of feeding Alexandrium tamarense, a paralytic shellfish toxin producer, on antioxidant enzymes in scallops (Patinopecten yessoensis) and mussels (Mytilus galloprovincialis)[J]. Aquaculture,2013,396/397/398/399:76-81. [25] CHENG C H, LIANG H Y, LUO S W, et al. The protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish (Takifugu obscurus) under low temperature stress[J]. Journal of Thermal Biology,2018,71:128-135. [26] 明建华.大黄素和维生素C对团头鲂生长、非特异性免疫以及抗应激的影响[D].南京:南京农业大学,2011. [27] QI H Q, LIU Y, JIAN F J, et al. Effects of dietary arachidonic acid (ARA) on immunity, growth and fatty acids of Apostichopus japonicus[J]. Fish & Shellfish Immunology,2022,127:901-909. [28] 张杰,韩琪琪,李春静,等.黄芪多糖对淇河鲫生长性能、抗氧化功能及抗病力的影响[J].中国水产科学,2022,29(8):1160-1167. [29] WU H Y, GUO M M, TAN Z J, et al. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks[J]. Journal of Chromatography.A,2014,1358:172-180. [30] MAY S P, BURKHOLDERJ A M, SHUMWAY S E, et al. Effects of the toxic dinoflagellate Alexandrium monilatum on survival, grazing and behavioral response of three ecologically important bivalve molluscs[J]. Harmful Algae,2010,9(3):281-293. [31] 向枭,陈建,周兴华,等.黄芪多糖对齐口裂腹鱼生长、体组成和免疫指标的影响[J].水生生物学报,2011,35(2):291-299. [32] ARAÚJO B C, FLORES-GALVEZ K, HONJI R M, et al. Arachidonic acid effects on the overall performance, fatty acid profile, hepatopancreas morphology and lipid-relevant genes in Litopenaeus vannamei juveniles[J]. Aquaculture,2020,523:735207. [33] 董晨帆,吴海燕,李清云,等.栉孔扇贝对氮杂螺环酸毒素代谢解毒的生理应激响应[J].海洋与湖沼,2020,51(6):1422-1431. [34] FU L L, ZHOU G, PAN J L, et al. Effects of Astragalus polysaccharides on antioxidant abilities and non-specific immune responses of Chinese mitten crab, Eriocheir sinensis[J]. Aquaculture International,2017,25(3):1333-1343. [35] 王成强,王际英,李宝山,等.饲料中花生四烯酸含量对刺参生长性能、抗氧化能力及脂肪酸代谢的影响[J].中国水产科学,2018,25(3):555-566. [36] CHANG Z Q, GE Q Q, SUN M, et al. Immune responses by dietary supplement with Astragalus polysaccharides in the Pacific white shrimp, Litopenaeus vannamei[J]. Aquaculture Nutrition,2018,24(2):702-711. [37] XU H G, MENG X X, WEI Y L, et al. Arachidonic acid matters[J]. Reviews in Aquaculture,2022,14(4):1912-1944. [38] 杨明,侯敢,黄迪南,等.海洋贝类体液防御机制的研究进展[J].水产科学,2006,25(8):428-430. [39] CHI C, GIRI S S, JUN J W, et al. Effects of algal toxin okadaic acid on the non-specific immune and antioxidant response of bay scallop (Argopecten irradians)[J]. Fish & Shellfish Immunology,2017,65:111-117. [40] KHOZIN-GOLDBERG I, COHEN Z, PIMENTA-LEIBOWITZ M, et al. Feeding with arachidonic acid-rich triacylglycerols from the microalga Parietochloris incisa improved recovery of guppies from infection with Tetrahymena sp[J]. Aquaculture,2006,255(1/2/3/4):142-150. [41] SUN Y K, WANG X, ZHOU H H, et al. Dietary Astragalus polysaccharides ameliorates the growth performance, antioxidant capacity and immune responses in turbot (Scophthalmus maximus L. )[J]. Fish & Shellfish Immunology,2020,99:603-608. [42] ZHANG W N, ZHANG M X, CHENG A Y, et al. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology,2020,100:126-136. [43] 李玉龙,杨健涛,杨志强,等.黄芪多糖在肠道黏膜诱导的内毒素耐受样免疫反应研究进展[J].中国畜牧杂志,2020,56(10):17-22.