Development of an Inactivated Aeromonas salmonicida Vaccine for Turbot Scophthalmus maximus
SHENG Dong, REN Xu, LI Fei, HUANG Luxi, LIU Yuxiao, YU Qinghua, ZHOU Weijia, YE Shigen, GUO Zhixin
1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; 2. Center for Fish Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
Abstract:To prevent furunculosis in turbot Scophthalmus maximus, pathogenic bacterium Aeromonas salmonicida (DLPJC01) was inactivated with formaldehyde in the bacterial solution with a volume fraction of 0.05%, 0.10%, 0.20%, 0.30% and 0.40%, and its safety was tested to prepare an inactivated vaccine. Subsequently, the healthy turbot with body weight of (95.5±9.7) g were divided into 4 groups, with 30 individuals in each group, and intraperitoneally injected with the inactivated vaccine (vaccine group), equal volume of normal saline (control group), chito-oligosaccharide and inactivated vaccine + chito-oligosaccharide, respectively. After 14 days of immunization, 109 cfu/mL of A. salmonicide was injected into the turbot to calculate the relative immune protection rate. The content of immunoglobulin M (IgM) and the activities of lysozyme (LZM) and superoxide dismutase (SOD) in turbot serum were detected, and the expression of immune-related genes (TLR2, TLR7, and MyD88) in muscle and liver tissues was detected by real-time quantitative PCR. There were significant increase in IgM and upregulation of MyD88, TLR2, and TLR7 in the vaccine group after 14 days (P<0.05), with peak IgM, and activities of LZM, and SOD in chitooligosaccharide groupd at 14 days. Immune protection rates were found to be 0% in the control group, 100% in the vaccine group, and 88.89% in both the chitooligosaccharide group and the vaccine + chitooligosaccharide group. An inactivated A. salmonicidal vaccine was successfully developed for turbot, which is significant for preventing furunculosis.
[1] ZHANG W C, DAN Z J, ZHENG J C, et al. Optimal dietary lipid levels alleviated adverse effects of high temperature on growth, lipid metabolism, antioxidant and immune responses in juvenile turbot (Scophthalmus maximus L. )[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2024,272:110962. [2] ZHANG J, ZHOU D D, ZHANG B Z, et al. Tetraspanin CD53 regulates peripheral blood leucocytes vitality and pathogen infection in turbot (Scophthalmus maximus)[J]. Fish & Shellfish Immunology,2024,146:109412. [3] SOUTO S, OLVEIRA J G, DOPAZO C P, et al. Reassortant betanodavirus infection in turbot (Scophthalmus maximus)[J]. Journal of Fish Diseases,2016,39(11):1347-1356. [4] GAO Y, WANG Q Y, LIU Y K, et al. Epidemiology of turbot bacterial diseases in China between October 2016 and December 2019[J]. Frontiers in Marine Science,2023,10:1145083. [5] ALMÓN B, PÉREZ-DIESTE J, DE CARLOS A, et al. Identification of the shell-boring parasite Polydora hoplura (Annelida:Spionidae) on wild stocks of Pecten maximus in Galician waters, NW Spain[J]. Journal of Invertebrate Pathology,2022,190:107750. [6] COSCELLI G A, BERMÚDEZ R, SANCHO SILVA A R, et al. Granulomatous dermatitis in turbot (Scophthalmus maximus L. ) associated with natural Aeromonas salmonicida subsp. salmonicida infection[J]. Aquaculture,2014,428:111-116. [7] 王艺.致病性气单胞菌病原学和分子流行病学特征研究[D].大连:大连海洋大学,2019. [8] 刘建男,郭羿,倪萍,等.养殖大菱鲆暴发性疖疮病的病原分离与组织病理研究[J].大连海洋大学学报,2020,35(5):701-706. [9] 王玉堂.疫苗及其在水生动物疾病预防中的应用(一)[J].中国水产,2018(7):82-86. [10] DUFF D C B. The oral immunization of trout against bacterium salmonicida[J]. The Journal of Immunology,1942,44(1):87-94. [11] 刘栭,冯祖强.注射土法免疫组织浆防治草鱼鱼种出血病[J].淡水渔业,1977,7(12):10-13. [12] WANG H R, MU J K, CHEN Y X, et al. Hybrid ginseng-derived extracellular vesicles-like particles with autologous tumor cell membrane for personalized vaccination to inhibit tumor recurrence and metastasis[J]. Advanced Science,2024,11(17):e2308235. [13] 王雪.烷基化壳聚糖基快速止血海绵的制备及其性能研究[D].上海:华东理工大学,2022. [14] TIAN Q Q, ZHANG Y Q, SU J G. Poly(I:C), chitosan oligosaccharide, and chitosan enhance inactivated GCRV vaccine potency in grass carp Ctenopharyngodon idella[J]. Comparative Immunology Reports,2024,6:200130. [15] 陈嘉俊,石韫玉,施斐,等.壳寡糖改善珍珠龙胆石斑鱼非特异性免疫能力的机制[J].水产学报,2022,46(1):95-106. [16] 潘吉脉.鲟鱼嗜水气单胞菌灭活疫苗研制及其免疫效果分析[D].贵阳:贵州大学,2020. [17] 郭慧敏,丁圆媛,王昊,等.杀鲑气单胞菌灭活疫苗的制备及其在大菱鲆体内的免疫效果[J].水产学报,2021,45(9):1574-1583. [18] YU Y Y, WANG Q C, HUANG Z Y, et al. Immunoglobulins, mucosal immunity and vaccination in teleost fish[J]. Frontiers in Immunology,2020,11:567941. [19] 梁艳,黄恋,常海艳,等.人参多糖对新甲型H1N1流感病毒灭活疫苗的免疫增强作用[J].激光生物学报,2012,21(1):36-41. [20] AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006,124(4):783-801. [21] 李学鹏.半滑舌鳎(Cynoglossus semilaevis)先天性免疫基因TLR2、TLR7、CD94和Bf的功能研究[D].青岛:中国科学院大学(中国科学院海洋研究所),2017. [22] KAWAI T, AKIRA S. Signaling to NF-kappaB by Toll-like receptors[J]. Trends in Molecular Medicine,2007,13(11):460-469. [23] PETZKE MM, BROOKS A, KRUPNA M A, et al. Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type Ⅰ IFN response by human immune cells[J]. Journal of Immunology,2009,183(8):5279-5292. [24] 高浩峰,邵蓬,武尊,等.魳鱼诺卡氏菌疫苗对石斑鱼免疫效果研究[J].中国农业科技导报,2024,26(2):145-152. [25] 胡睿同,陈昊楠,张家豪,等.壳寡糖对水产动物生理活性影响的研究进展[J].饲料研究,2023,46(6):123-127. [26] 马少鸿.壳寡糖及油佐剂增强石斑鱼哈维氏弧菌FlgE亚单位疫苗和核酸疫苗的免疫效果研究[D].湛江:广东海洋大学,2021. [27] 吴明波.黄颡鱼暴发性流行病病原分离鉴定以及灭活疫苗的制备[D].荆州:长江大学,2022. [28] 司奇,胡雨,戴静,等.微生物源溶菌酶的抑菌及抗炎活性[J].食品研究与开发,2024,45(4):68-73. [29] 魏代民,刘长宇,张伟,等.锦鲫源豚鼠气单胞菌灭活疫苗的制备及免疫效果评价[J].特种经济动植物,2021,24(11):3-10. [30] 胡安东.冷水鱼免疫增强剂筛选及初步应用研究[D].贵阳:贵州大学,2020. [31] 韦光本.哈维氏弧菌灭活疫苗糖类佐剂的筛选及其对珍珠龙胆石斑鱼免疫保护的研究[D].湛江:广东海洋大学,2020. [32] 孙祥.基于非油乳佐剂的大菱鲆鳗弧菌和杀鲑气单胞菌灭活疫苗开发[D].上海:华东理工大学,2020. [33] 高华义,刘堃,张璐,等.重组CRM197-4GnRH去势疫苗抗原分子的原核表达及免疫效果评价[J].畜牧与兽医,2024,56(3):69-76.