Abstract:To determine the optimal stocking density for venus clam Cyclina sinensis and hard-shell clam Mercenaria mercenaria, venus clam with body weight of (8.19±0.25) g and hard-shell clam with body weight of (6.75±0.14) g were reared in a 1 m3 canvas tank of a recirculating water system with 1∶1 mixed sediment at the bottom at stocking densities of 200, 300, 400 and 500 ind./m2 and 500, 600, 700 and 800 ind./m2,respectively, at water temperature of (22±3) °C for 60 days. The results showed that there were a downward trend in both the growth rate and survival rate of venus clam with increase in stocking density, with significantly higher survival rate in 200 ind./m2 group than that in 400 ind./m2 and 500 ind./m2 groups (P<0.05), and without significant difference compared with those in 300 ind./m2 group (P>0.05). The body weight and specific growth rate (SGR) were found to be significantly higher in venus clam in 200 ind./m2 group than those in 400 ind./m2 and 500 ind./m2 groups (P<0.05), and significantly higher in 300 ind./m2 group than those in 500 ind./m2 group (P<0.05). Hard-shell clam had decrease in all growth indices with increasing density, without significant differences in SGR among density groups (P>0.05). However, the survival rate was shown to be decreased in hard-shell clam with increasing density, without significant differences in survival among groups (P>0.05). Throughout the culture period, key water quality parameters including ammonia nitrogen and nitrite nitrogen contents were remained within suitable ranges. The activities of pancreatic proteases and amylases were found to be gradually decreased in venus clam as stocking density increased, with significantly higher protease and amylase activities in 200 ind./m2 group than those in 400 ind./m2 and 500 ind./m2 groups (P<0.05). No significant differences in digestive enzyme activities were observed among hard-shell clam treatment groups (P>0.05), with the minimal protease and amylase activities in 700 ind./m2 group and the maximal in 500 ind./m2 group. Lipase activity was shown to be decreased in hard-shell clam with increasing density. Collectively, these results indicate that under short-term recirculating water culture conditions, stocking density of 300 ind./m2 for C. sinensis and 800 ind./m2 for M. mercenaria did not led to significant adverse effects on their growth performance, main digestive enzyme activities, and water quality.
[1] 王兰萍,耿荣庆,刘意,等.我国青蛤种质资源研究与利用现状[J].江苏农业科学,2007,35(4):254-255. [2] 李晓英,董志国,阎斌伦,等.青蛤与文蛤的营养成分分析与评价[J].食品科学,2010,31(23):366-370. [3] 刘永新,方辉,来琦芳,等.我国盐碱水渔业现状与发展对策[J].中国工程科学,2016,18(3):74-78. [4] 林志华,何琳,董迎辉.浙江滩涂贝类种业科技创新发展及展望[J].水产学报,2023,47(1):109-124. [5] 王印庚,杨洋,张正,等.津冀地区养殖三疣梭子蟹大量死亡的病原和病理分析[J].中国水产科学,2017,24(3):596-605. [6] 尤仲杰.不同放养密度对泥螺生长的影响[J].水产科学,2007,26(2):103-105. [7] MANDUCA L G, DA SILVA M A, DE ALVARENGA É R, et al.Effects of a zero exchange biofloc system on the growth performance and health of Nile tilapia at different stocking densities[J].Aquaculture,2020,521:735064. [8] HERRERA M, VARGAS-CHACOFF L, HACHERO I, et al.Physiological responses of juvenile wedge sole Dicologoglossa cuneata (Moreau) to high stocking density[J].Aquaculture Research,2009,40(7):790-797. [9] 胡高宇.基于Ecopath模型的虾贝海水池塘综合养殖模式研究[D].上海:上海海洋大学,2020. [10] 李平,陆元君,朱龙翔.海水池塘鱼虾贝多品种多层级生态养殖技术[J].水产养殖,2022,43(1):48-50. [11] 郑述河. 池塘虾贝生态养殖和产品质量安全控制模式构建[R]. 滨州:滨州市海洋与渔业研究所, 2020. [12] WANG L W, LI X N, XIE J P, et al. Effects of salinity, temperature, ammonia, and nitrite stress on growth and physiological biochemical indices of Litopenaeus vannamei[J]. Journal of Shanghai Ocean University, 2024: 1-17. [13] 马学艳,徐良,闻海波,等.饵料、底质与养殖密度对紫黑翼蚌稚蚌成活和生长的影响[J].西南农业学报,2019,32(7):1678-1681. [14] 蒋飞,徐嘉波,施永海,等.不同激活盐度对3个盐度培育下金钱鱼精子活力的影响[J].江苏海洋大学学报(自然科学版),2021,30(1):7-11. [15] 李浩宇.养殖模式和密度对缢蛏生长与生理指标的影响[D].上海:上海海洋大学,2021. [16] 张瑞标,王珊珊,杨晓斌,等.不同养殖密度对虾夷扇贝生长与存活的影响[J].科学养鱼,2019(12):57-58. [17] 萧云朴,陈舜,伍德瀛,等.养殖密度对虾夷扇贝在浙江南麂海区生长的影响[J].南方水产,2009,5(5):1-7. [18] CHEN S M, TSENG K Y, HUANG C H.Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae[J].Fish & Shellfish Immunology,2015,45(1):141-145. [19] 张龙,曲克明,张鹏,等.在循环水养殖系统中养殖密度对红鳍东方鲀应激反应和抗氧化状态的影响[J].渔业现代化,2019,46(4):14-23. [20] 宋一明,葛建龙,廖梅杰,等.养殖密度对投喂模式下网箱养殖刺参生长、消化酶及肠道菌群的影响[J].渔业科学进展,2024,45(6):199-211. [21] LIU G, YE Z Y, LIU D Z, et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems[J].Fish & Shellfish Immunology,2018,81:416-422. [22] ADINEH H, NADERI M, KHADEMI HAMIDI M, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density[J].Fish & Shellfish Immunology,2019,95:440-448. [23] 姚琦.稻虾共生模式下不同放养密度对红螯螯虾生长、消化及抗氧化能力的影响[D].长春:吉林农业大学,2022. [24] 张海恩,何玉英,李健,等.不同养殖密度对中国明对虾生长和能量代谢的影响[J].渔业科学进展,2021,42(5):70-76. [25] 陶亮.盐度和密度对缢蛏生长、生理代谢及抗氧化水平的影响[D].上海:上海海洋大学,2022. [26] 安贤惠,李联泰,林春梅.几种贝类消化酶活力的比较[J].淮海工学院学报(自然科学版),2007,16(1):57-59. [27] 魏孟申,郑涛,路思琪,等.氨氮胁迫对大口黑鲈幼鱼组织结构、酶活及肠道微生物的影响[J].水生生物学报,2024,48(1):10-22. [28] 倪蒙,陈雪峰,高强,等.放养密度对温棚养殖罗氏沼虾生长、生化指标、水质及养殖效益的影响[J].大连海洋大学学报,2021,36(3):423-429. [29] CHARY K, BRIGOLIN D, CALLIER M D.Farm-scale models in fish aquaculture—an overview of methods and applications[J].Reviews in Aquaculture, 2022,14(4):2122-2157. [30] 郝振林,唐雪娇,丁君,等.不同高温水平对虾夷扇贝存活率、耗氧率和体腔液免疫酶活力的影响[J].生态学杂志,2014,33(6):1580-1586. [31] COLT J, WATTEN B, RUST M. Modeling carbon dioxide, pH, and un-ionized ammonia relationships in serial reuse systems[J].Aquacultural Engineering,2009,40(1):28-44. [32] 巫旗生,祁剑飞,宁岳,等.盐度、pH、氨氮对钝缀锦蛤稚贝生长及存活的影响[J].渔业研究,2021,43(6):621-627.