Genetic Diversity Assessment of Grass Carp Ctenopharyngodon idella in Four Culture Areas Based on Mitochondrial and Microsatellite Markers
ZHU Yanran1,2, CHANG Yumei2, HUANG Jing2, LU Cuiyun2, SHEN Yubang1, SONG Hongmei3, HU Guo1,2
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; 2. Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; 3. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
Abstract:In order to provide reference information for selective breeding programs in grass carp Ctenopharyngodon idella, genetic diversity was comprehensively evaluated in four farmed populations of grass carp sampled from Guangzhou in Guangdong province, Suzhou, Jiangsu province, Meihekou in Jilin province, and Zhaodong, Heilongjiang province and one wild grass carp population from Fuyuan River section of Heilongjiang River using 30 microsatellite molecular markers and mitochondrial Cytb (cytochrome b) genes. The results showed that there were no significant differences in the genetic diversity indices including mean number of alleles(Na), effective number of alleles(Ne), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) among the five populations (P>0.05), with statistically significant divergence in pairwise genetic differentiation (Fst)across all population pairs (P<0.05), especially, the Fst values of over 0.05 between the wild Fuyuan population and each of the four cultured populations. Only the pair Meihekou and Zhaodong exhibited a genetic differentiation coefficient exceeding this threshold among the cultured populations. Hardy-Weinberg equilibrium tests revealed that there was the minimal deviation in the wild Fuyuan population, with only six loci showing disequilibrium, and deviated from 9 to 13 loci in the four farmed populations. Structure analysis showed that the populations were clustered into three distinct genetic clusters: the Suzhou-Pearl River-Zhaodong cluster, the Meihekou cluster, and the Fuyuan cluster. Mitochondrial Cytbsequence analyses identified extensive haplotype sharing between the cultured populations and the Fuyuan wild population, suggesting potential overlap in their genetic backgrounds. Overall, all five populations had high levels of genetic diversity, indicating sufficient genetic resources for selective breeding. However, the reduced genetic variation among the farmed populations may limit future breeding potential due to increase in genetic similarity.
朱嫣然, 常玉梅, 黄晶, 鲁翠云, 沈玉帮, 宋红梅, 户国. 4个养殖区域的草鱼群体遗传多样性评估[J]. 水产科学, 2026, 45(1): 25-35.
ZHU Yanran, CHANG Yumei, HUANG Jing, LU Cuiyun, SHEN Yubang, SONG Hongmei, HU Guo. Genetic Diversity Assessment of Grass Carp Ctenopharyngodon idella in Four Culture Areas Based on Mitochondrial and Microsatellite Markers. Fisheries Science, 2026, 45(1): 25-35.
[1] LI L S, BALTO G, XU X Y, et al. The feeding ecology of grass carp:a review[J]. Reviews in Aquaculture,2023,15(4):1335-1354. [2] 沈玉帮,张俊彬,李家乐.草鱼种质资源研究进展[J].中国农学通报,2011,27(7):369-373. [3] 周盼,张研,徐鹏,等.基于26个微卫星标记的三江水系草鱼遗传多样性分析[J].中国水产科学,2011,18(5):1011-1020. [4] 傅建军,李家乐,沈玉帮,等.草鱼野生群体遗传变异的微卫星分析[J].遗传,2013,35(2):192-201. [5] 廖小林,俞小牧,谭德清,等.长江水系草鱼遗传多样性的微卫星DNA分析[J].水生生物学报,2005,29(2):113-119. [6] 傅建军,王荣泉,沈玉帮,等.我国草鱼野生群体D-Loop序列遗传变异分析[J].水生生物学报,2015,39(2):349-357. [7] 汪焕,江河,段国庆,等.安徽省草鱼养殖群体遗传多样性及遗传结构分析[J].安徽农业大学学报,2020,47(1):25-29. [8] 张志伟.草鱼野生和养殖群体间遗传结构比较研究[D].南京:南京农业大学,2006. [9] 欧阳美,张晓宇,张富铁,等.基于线粒体Cyt b基因序列的长江中上游草鱼野生和养殖群体遗传多样性比较研究[J].淡水渔业,2021,51(4):65-74. [10] 谢玲莉,沈玉帮,桂朗,等.基于全基因组重测序技术探究亚洲草鱼遗传多样性及其适应机制[J].水产学报,2025,49(1):36-50. [11] 王九龙,叶苗,李洪莉,等.绿鳍马面鲀野生与养殖群体的微卫星遗传多样性分析[J].水产科学,2024,43(2):312-318. [12] 刘小宇,熊礼静,彭波,等.14个克氏原螯虾养殖群体遗传多样性分析[J].水产科学,2023,42(3):457-465. [13] DESALLE R, SCHIERWATER B, HADRYS H. MtDNA:The small workhorse of evolutionary studies[J]. Frontiers in Bioscience,2017,22(5):873-887. [14] 王彩雯,穆爱娟,王吉祥,等.基于线粒体Cytb及CO Ⅰ基因的黄河上游大鼻吻鮈(Rhinogobio nasutus)遗传多样性与系统发育关系分析[J].基因组学与应用生物学,2024,43(增刊2):1826-1835. [15] ZHANG G Q, CHEN C, LU W X, et al. Genetic diversity and phylogeography of Taenioidescirratus in five geographical populations based on mitochondrial COI and cytb gene sequences[J]. Journal of Applied Ichthyology,2023,2023(1):4459823. [16] YU C C, TANG H P, JIANG Y C, et al. Growth performance and selection signatures revealed by whole-genome resequencing in genetically selected grass carp (Ctenopharyngodon idella)[J]. Aquaculture,2024,587:740885. [17] 李达.草鱼微卫星标记开发及9个养殖群体遗传多样性分析[D].上海:上海海洋大学,2014. [18] 朱冰,樊佳佳,白俊杰,等.金草鱼与中国4个草鱼群体的微卫星多态性比较分析[J].南方水产科学,2017,13(2):51-58. [19] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,1980,32(3):314-331. [20] 李言,刘延岭,梁广津,等.基于SSR标记构建海带核心繁育群体[J].水产科学,2025,44(5):717-726. [21] 王解香,白俊杰,于凌云.草鱼EST-SSRs标记的筛选及其与生长性状相关分析[J].淡水渔业,2012,42(1):3-8. [22] 顾剑峰,吴初新,王隽隽,等.草鱼生长性状相关微卫星标记的初步筛选[J].南昌大学学报(理科版),2023,47(3):283-287. [23] 余成晨,沈玉帮,徐晓雁,等.草鱼生长相关的微卫星标记在选育群体中的验证[J].水产学报,2021,45(3):321-332. [24] 孙雪,李胜杰,杜金星,等.草鱼GHRH基因SNPs的筛选及其与生长性状的关联分析[J].农业生物技术学报,2021,29(5):963-972. [25] 曹婷婷,白俊杰,于凌云,等.草鱼醛缩酶B基因部分序列的SNP多态性及其与生长性状的关联分析[J].水产学报,2012,36(4):481-488. [26] 陈锋,黄梦璐,李家乐,等.基于HRM技术的草鱼抗小瓜虫nlrc3基因SNP标记开发及关联分析[J].上海海洋大学学报,2024,33(1):1-8. [27] 余成晨,张伟,徐晓雁,等.草鱼选育群体不同世代遗传变异的微卫星分析[J].中国水产科学,2022,29(8):1109-1118. [28] BABAR M N K. Investigation of genetic diversity and phylogenetic relationship of Ctenopharyngodon idella from different regions of Punjab by using SSR Markers[J]. Pure and Applied Biology,2022,11(1):209-216. [29] 周月娟.长江中上游鲢和草鱼的遗传多样性研究[D].上海:上海海洋大学,2023. [30] 王沈同,沈玉帮,孟新展,等.草鱼野生与选育群体遗传变异微卫星分析[J].水产学报,2018,42(8):1273-1284. [31] SHEN Z Y, SHAO L M, LIU X X, et al. Assessment of germplasm improvement in three farmed grass carp populations based on genetic variability[J]. Biology,2025,14(3):230. [32] 李鸥,赵莹莹,郭娜,等.草鱼种群SSR分析中样本量及标记数量对遗传多度的影响[J].动物学研究,2009,30(2):121-130. [33] PEREIRO P, REY-CAMPOS M, FIGUERAS A, et al. An environmentally relevant concentration of antibiotics impairs the immune system of zebrafish (Danio rerio) and increases susceptibility to virus infection[J]. Frontiers in Immunology,2022,13:1100092. [34] WRIGHT S. Evolution and the Genetics of Populations:A Treatise[M]. Chicago: University of Chicago Press,1978:1-112.