Abstract:To screen microsatellite molecular markers related to the growth and stress resistance of white bream Parabramis pekinensis for the selection of superior broodstock, the association between stress resistance and growth was analyzed in 140 individuals of white bream with average body weight of 8.07 g collected from Heilongjiang, Jilin, and Jiangsu provinces by 12 pairs of microsatellite primers. The results showed that a total of 92 alleles was detected in the survival group (Group L), with an average number of alleles (Na) of 7.666 7, an average effective number of alleles (Ne) of 3.615 1, an average observed heterozygosity (No) of 0.537 5, an average expected heterozygosity (Ne) of 0.589 8, and an average polymorphism information content (PIC) of 0.552 7. A total of 103 alleles was observed in the weak group (Group D), with an average number of alleles (Na) of 8.583 3, an average effective number of alleles (Ne) of 4.086 7, an average observed heterozygosity (No) of 0.502 5, an average expected heterozygosity (Ne) of 0.589 7, and an average polymorphism information content (PIC) of 0.546 4. Ten alleles were identified as potential dominant genes for transportation stress resistance, namely CCB5F216, CCB6F336, CCB10F270, CCB10F276, CCB10F280, CCB11F178, CCB11F200, CCB15F352, and CCB2F348, CCB3F314 among the 12 pairs of microsatellite primers. Three genotypes were found to be positively correlated with superior growth traits: the 298/298 genotype and the 298/310 genotype in CCB3F, as well as the 270/270 genotype in CCB10F. Six broodstock individuals were successfully identified, with strong stress resistance and excellent growth traits, by combining the effects of dominant microsatellite marker genotypes and stress resistance testing
刘宇婷, 闫春梅, 金香琴, 陈伟强, 柳鹏, 郎宇奎, 张莹, 徐宁. 基于微卫星标记的长春鳊优良亲本筛选研究[J]. 水产科学, 2026, 45(1): 55-64.
LIU Yuting, YAN Chunmei, JIN Xiangqin, CHEN Weiqiang, LIU Peng, LANG Yukui, ZHANG Ying, XU Ning. Screening of High-Quality Brooders of White Bream Parabramis pekinensis Based on Microsatellite Markers. Fisheries Science, 2026, 45(1): 55-64.
[1] 姜家泰.商品鱼基地成鱼生产中以长春鳊为主的放养试验[J].湖南水产科技,1980,5(4):33-36. [2] 赵海燕,李池陶,贾智英,等.德国镜鲤微卫星标记与形态性状的相关分析及亲本的选育[J].上海海洋大学学报,2009,18(5):513-519. [3] 顾剑峰.鳙优良性状分子标记的鉴定及上高养殖群体的选育路线[D].南昌:南昌大学,2023. [4] 穆方申,苗亮,李明云,等.微卫星技术筛选大黄鱼耐低温标记[J].生物学杂志,2017,34(1):34-38. [5] 马爱军,许可,黄智慧,等.大菱鲆与耐高温性状相关的微卫星标记筛选[J].海洋科学进展,2011,29(3):370-378. [6] 方振朋.微卫星标记在凡纳滨对虾遗传背景及抗WSSV性能分析中的应用[D].上海:上海海洋大学,2019. [7] 常浩文.大菱鲆饲料转化率性状的遗传评估及相关分子标记筛选[D].上海:上海海洋大学,2023. [8] 马海兵,黄天晴,徐革锋,等.虹鳟倍性鉴定SSR标记筛选与应用研究[J].渔业科学进展,2024,45(4):43-52. [9] 刘士力.翘嘴鲌微卫星重复序列特征及生长性状相关微卫星标记筛选[D].上海:上海海洋大学,2021. [10] 吴新燕,梁宏伟,罗相忠,等.长丰鲢生长性状相关微卫星标记的初步筛选[J].水产学报,2022,46(1):20-30. [11] 罗相中,时乐,沙航,等. 鲢微卫星标记与生长性状的相关分析[J]. 淡水渔业,2022,56(6):17-25. [12] 顾剑峰,吴初新,王隽隽,等.草鱼生长性状相关微卫星标记的初步筛选[J].南昌大学学报(理科版),2023,47(3):283-287. [13] 刘志刚,高风英,佟延南,等.尼罗罗非鱼生长性状相关微卫星标记的筛选与验证[J].大连海洋大学学报,2023,38(6):925-934. [14] 潘亚丹,鲁翠云,孙志鹏,等.梭鲈快速生长品系F3基因型与生长性状关联分析[J].上海海洋大学学报,2024,33(5):1053-1063. [15] 岑剑伟,陈琛,姚世鹏,等.基于多组学联用的活鱼暂养及运输应激研究进展[J].南方水产科学,2024,20(3):173-180. [16] 闫兵兵,陈义培,卢玉平,等.暗纹东方纯“中洋1号” 新品种育种技术[J].科学养鱼,2019(7):6-7. [17] 胡志国,刘建勇,袁瑞鹏,等.3个凡纳滨对虾引进群体对温度和盐度耐受力的配合力分析[J].海洋科学,2016,40(1):25-31. [18] 王明珠,孟宪红,孔杰,等.低温胁迫条件下中国明对虾生长性状和耐低温性状的遗传参数评估[J].渔业科学进展,2018,39(3):96-102. [19] 苗亮,李明云,陈炯,等.快长、耐低温大黄鱼新品种东海1号的选育[J].农业生物技术学报,2014,22(10):1314-1320. [20] 黄智慧.大菱鲆耐高温性状选育及遗传机理研究[D].青岛:中国海洋大学,2014. [21] 卢钟磊,池信才,王义权,等.褐牙鲆耐热性状相关的微卫星分子标记筛选[J].厦门大学学报(自然科学版),2007,46(3):396-402. [22] 袁晨浩.红鳍东方鲀耐低温标记筛选及转录组分析[D].舟山:浙江海洋大学,2021. [23] 刘延鑫,孙宇,李业亮,等.2个与HSP70基因连锁的微卫星座位与牛运输应激性状的关联分析[J].中国畜牧兽医,2018,45(2):456-462. [24] 王晓娜,汪秀星,赵茹茜,等.猪应激性状QTL微卫星标记与运输应激后肉质性状关系的研究[J].农业生物技术学报,2009,17(3):386-392. [25] 李燕,董晓丽,郑先虎.杂交鳜(Siniperca chuatsi × Siniperca scherzeri)微卫星标记与主要生长性状的相关性分析[J].云南农业大学学报(自然科学),2020,35(2):302-308. [26] DU R, ZHANG D L, WANG Y Z, et al. Cross-species amplification of microsatellites in genera Megalobrama and Parabramis[J]. Journal of Genetics,2013,92(3):e106-9. [27] 张倩倩,陈杰,蒋霞云,等.不同鳊鲂鱼类群体微卫星DNA指纹图谱的构建和遗传结构分析[J].水产学报,2014,38(1):15-22. [28] 李琳,李新辉,杨计平,等.珠江三种鲌亚科鱼类微卫星鉴别技术的建立[J].广东农业科学,2014,41(10):102-105. [29] 闫春梅,郑伟,高春山,等.基于微卫星标记的图们江大麻哈鱼遗传多样性分析[J].水产学杂志,2021,34(5):1-7. [30] 邹杰,马爱军,赵艳飞,等.利用微卫星标记分析3个暗纹东方鲀(Takifugu obscurus)养殖群体的遗传多样性[J].渔业科学进展,2015,36(2):55-62. [31] 余成晨,沈玉帮,徐晓雁,等.草鱼生长相关的微卫星标记在选育群体中的验证[J].水产学报,2021,45(3):321-332. [32] 耿波,孙效文,梁利群,等.利用17个微卫星标记分析鳙鱼的遗传多样性[J].遗传,2006,28(6):683-688. [33] 王丰,张猛,沈玉帮,等.青鱼微卫星标记的开发与特性分析[J].动物学杂志,2019,54(1):57-65. [34] SHA H, LUO X Z, WANG D, et al. New insights to protection and utilization of silver carp (Hypophthalmichthys molitrix) in Yangtze River based on microsatellite analysis[J]. Fisheries Research,2021,241:105997. [35] 朱晓东,耿波,李娇,等.利用30个微卫星标记分析长江中下游鲢群体的遗传多样性[J].遗传,2007,29(6):705-713. [36] 刘良国,陈海康,许倩,等.基于微卫星标记的洞庭青鲫与三个鲫品系群体遗传多样性分析[J].海洋与湖沼,2016,47(3):647-654. [37] LIU F, XIA J H, BAI Z Y, et al. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis[J]. Aquaculture,2009,297(1/2/3/4):51-56. [38] EISSA N, WANG H P. Transcriptional stress responses to environmental and husbandry stressors in aquaculture species[J]. Reviews in Aquaculture,2016,8(1):61-88. [39] HA H J, MIN J, LEE J D, et al. Optimal conditions for long-distance transportation of live black rockfish (Sebastes schlegeli) and changes in their characteristics during transport[J]. Journal of Aquatic Food Product Technology,2019,28(7):762-771. [40] URBINATI E C, DE ABREU J S, DA SILVA CAMARGO A C, et al. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities[J]. Aquaculture,2004,229(1/2/3/4):389-400. [41] NONG X L, ZHU K C, GUO H Y, et al. Effects of density stress during transportation on the antioxidant activity and immuno-related gene expression in yellowfin seabream (Acanthopagrus latus houttuyn,1782)[J]. Genes,2024,15(11):1479. [42] PICKERING AD, POTTINGER T G. Chapter 17 biochemical effects of stress[J].Environmental and Ecological Biochemistry,1995,5:349-379. [43] 李勇男.水中添加维生素C缓解鲤鱼运输应激的研究[D].无锡:江南大学,2016. [44] DE LOURDES RUIZ-GOMEZ M, KITTILSEN S, HÖGLUND E, et al. Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent coping styles:when doves become Hawks[J]. Hormones and Behavior,2008,54(4):534-538. [45] ØYVIND Ø, SØRENSEN C, NILSSON G E. Behavioral indicators of stress-coping style in rainbow trout:do males and females react differently to novelty?[J]. Physiology & Behavior,2006,87(3):506-512. [46] LI Y C, KOROL A B, FAHIMA T, et al. Microsatellites within genes:structure, function, and evolution[J]. Molecular Biology and Evolution,2004,21(6):991-1007. [47] BAGSHAW A T M. Functional mechanisms of microsatellite DNA in eukaryotic genomes[J]. Genome Biology and Evolution,2017,9(9):2428-2443.