A Review: Advance Research on Toxic Effects of Heavy Metals on Shrimp
XU Chi1,2, XIAN Jian'an1, GUO Hui2, ZHANG Xiuxia1, ZHANG Zelong1, ZHENG Peihua1, LI Juntao1, LU Yaopeng1
1. Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; 2. Zhanjiang Key Laboratory of Marine Ecology and Aquaculture Environment, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
[1] TAHER T B, ALTHAUS C E, TRANTER P J, et al. Impacts of shrimp aquaculture on the local communities and conservation of the world's largest protected mangrove forest[J]. Environmental Science & Policy,2023,147:351-360. [2] EMERENCIANO M GC, ROMBENSO A N, VIEIRA F D N, et al. Intensification of penaeid shrimp culture:an applied review of advances in production systems, nutrition and breeding[J]. Animals,2022,12(3):236. [3] LE N T T, HESTVIK E B, ARMSTRONG C W, et al. Determinants of inefficiency in shrimp aquaculture under environmental impacts:comparing shrimp production systems in the Mekong, Vietnam[J]. Journal of the World Aquaculture Society,2022,53(5):963-983. [4] LI N, HOU Y H, MA D D, et al. Lead accumulation, oxidative damage and histopathological alteration in testes and accessory glands of freshwater crab, Sinopotamonhenanense, induced by acute lead exposure [J]. Ecotoxicology and Environmental Safety,2015,117:20-27. [5] SHAHSAVANI A, FAKHRI Y, FERRANTE M, et al. Risk assessment of heavy metals bioaccumulation:fished shrimps from the Persian gulf[J]. Toxin Reviews,2017,36(4):322-330. [6] WU Y S, HUANG S L, CHUNG H C, et al. Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure[J]. Fish & Shellfish Immunology,2017,62:116-123. [7] QIAN D W, XU C, CHEN C Z, et al. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2020,100:445-455. [8] CHEN Y H, HE J G. Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection[J]. Fish & Shellfish Immunology,2019,84:744-755. [9] BU R Q, WANG P F, ZHAO C, et al. Gene characteristics, immune and stress responses of PmPrx1 in black tiger shrimp (Penaeus monodon):insights from exposure to pathogenic bacteria and toxic environmental stressors [J]. Developmental and Comparative Immunology,2017,77:1-16. [10] PENG F J, LI J W, GONG Z Y, et al. Investigation of bioaccumulation and human health risk assessment of heavy metals in crayfish (Procambarus clarkii) farming with a rice-crayfish-based coculture breeding modes [J]. Foods,2022,11(3):261. [11] FRÍAS-ESPERICUETA M G, ABAD-ROSALES S, NEVÁREZ-VELÁZQUEZ A C, et al. Histological effects of a combination of heavy metals on Pacific white shrimp Litopenaeus vannamei juveniles[J]. Aquatic Toxicology,2008,89(3):152-157. [12] WU Y S, CHANG C H, NAN F H. Steroid hormone ″cortisone″ and ″20-hydroxyecdysone″ involved in the non-specific immune responses of white shrimp (Litopenaeus vannamei)[J]. Fish & Shellfish Immunology,2016,56:272-277. [13] 高淑英,邹栋樑.镉、锌和锰对长毛对虾幼体的急性毒性[J].海洋通报,1995,14(6):83-86. [14] ASIH A Y P, IRAWAN B, SOEGIANTO A. Effect of copper on survival, osmoregulation, and gill structures of freshwater prawn (Macrobrachium rosenbergii, de Man) at different development stages[J]. Marine and Freshwater Behaviour and Physiology,2013,46(2):75-88. [15] BAMBANG Y, THUET P, CHARMANTIER-DAURES M, et al. Effect of copper on survival and osmoregulation of various developmental stages of the shrimp Penaeus japonicus bate (Crustacea, Decapoda)[J]. Aquatic Toxicology,1995,33(2):125-139. [16] 李建军,杨笑波,黄韧,等.五种重金属离子对黑褐新糠虾的急性毒性试验[J].海洋环境科学,2006,25(2):51-53. [17] HAQUE M N, LEE D H, KIM B M, et al. Dose-and age-specific antioxidant responses of the mysid crustacean Neomysis awatschensis to metal exposure[J]. Aquatic Toxicology,2018,201:21-30. [18] 邹栋梁,高淑英.铜、锌、镉、汞、锰和铬对斑节对虾仔虾急性致毒的研究[J].海洋环境科学,1994,13(3):13-18. [19] 宋维彦,靳桂双,毕伟伟,等.五种重金属离子对克氏原螯虾(Procambarus clarkii)的急性毒性作用研究[J].激光生物学报,2010,19(2):206-211. [20] 陈细香,康瑞莲,蔡月明,等.4种重金属对克氏原螯虾的急性毒性研究[J].安徽农业科学,2012,40(32):15715-15718. [21] 郑琰晶,魏社林,吴进孝,等.Cu2+、Zn2+、SDS、DBS对脊尾白虾的毒性试验[J].热带海洋学报,2006,25(5):87-90. [22] 张彩明.几种常见重金属对日本黄姑鱼和脊尾白虾的毒性效应研究[D].舟山:浙江海洋学院,2013. [23] ZHANG C S, YU K J, LI F H, et al. Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda[J]. Ecotoxicology and Environmental Safety,2017,145:549-556. [24] 王红义,曹善茂,李应东,等.4种重金属离子对中华原钩虾幼虾的急性毒性研究[J].河北渔业,2010(5):7-9. [25] 白东清,郭永军,董少杰,等.Cu2+·Zn2+·SDS·DBS对凡纳滨对虾仔虾的毒性试验[J].安徽农业科学,2009,37(30):15074-15076. [26] BARBIERI E. Use of oxygen consumption and ammonium excretion to evaluate the sublethal toxicity of cadmium and zinc on Litopenaeus schmitti (Burkenroad,1936, Crustacea)[J]. Water Environment Research,2007,79(6):641-646. [27] SHUHAIMI-OTHMAN M, YAKUB N, RAMLE N A, et al. Sensitivity of the freshwater prawn, Macrobrachium lanchesteri (Crustacea:Decapoda), to heavy metals[J]. Toxicology and Industrial Health,2011,27(6):523-530. [28] 李娜.水体Cu2+对罗氏沼虾(Macrobrachium rosenbergii)毒性作用机制的研究[D].上海:华东师范大学,2006. [29] YANG J L, CHEN L H, LEE Y C, et al. Comparative acute toxicity of Copper (Ⅱ), Cadmium (Ⅱ), and Gallium (Ⅲ) on freshwater shrimp (Macrobrachium nipponense) and reference values for five aquatic organisms[J]. Environ Sci, 2008, 3(2). [30] 谢嘉,滕佳,刘永亮,等.Cd2+和Pb2+单一与复合污染对脊尾白虾的急性毒性效应研究[J].海洋科学,2017,41(5):27-33. [31] 梁华芳,卓宏标,廖永岩,等.Cd2+和Hg2+对波纹龙虾的急性毒性[J].水产科学,2020,39(3):420-424. [32] 张亚娟,王军霞,赵盼茹,等.Hg2+对日本沼虾的毒性作用[J].河北大学学报(自然科学版),2008,28(1):74-78. [33] 吕耀平,李小玲,贾秀英.Cr6+、Mn7+和Hg2+对青虾的毒性和联合毒性研究[J].上海水产大学学报,2007,16(6):549-554. [34] SOEGIANTO A, ASIH A Y P, IRAWAN B. Lead toxicity at different life stages of the giant prawn (Macrobrachium rosenbergii, de man):considerations of osmoregulatory capacity and histological changes in adult gills[J]. Marine and Freshwater Behaviour and Physiology,2016,49(3):187-200. [35] 王志铮,吕敢堂,许俊,等.Cr6+、Zn2+、Hg2+对凡纳滨对虾幼虾急性毒性和联合毒性研究[J].海洋水产研究,2005,26(2):6-12. [36] LIU J J, DIAO Z H, XU X R, et al. Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments[J]. Science of the Total Environment,2019,666:894-901. [37] ZHANG X, ZHAO B W, LIU H, et al. Effects of pyrolysis temperature on biochar's characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars [J]. Environmental Technology & Innovation,2022,26:102288. [38] ZHANG Y H, ZHANG H H, ZHANG Z B, et al. pH effect on heavy metal release from a polluted sediment[J]. Journal of Chemistry,2018,2018:7597640. [39] BARBIERI E, DOI S A. The effects of different temperature and salinity levels on the acute toxicity of zinc in the pink shrimp (Farfantepenaeus paulensis)[J]. Marine and Freshwater Behaviour and Physiology,2011,44(4):251-263. [40] FÖRSTNER U. Metal transfer between solid and aqueous phases[M]//FÖRSTNER U, WITTMANN G T W. Metal Pollution in the Aquatic Environment. Berlin, Heidelberg:Springer Berlin Heidelberg,1981:197-270. [41] WILLIAMS T P, BUBB J M, LESTER J N. Metal accumulation within salt marsh environments:a review[J]. Marine Pollution Bulletin,1994,28(5):277-290. [42] ONCEL I, KELEŞ Y, USTÜN A S. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings[J]. Environmental Pollution,2000,107(3):315-320. [43] BROWN A, THATJE S, HAUTON C. The effects of temperature and hydrostatic pressure on metal toxicity:insights into toxicity in the deep sea[J]. Environmental Science & Technology,2017,51(17):10222-10231. [44] RAO D G V P, KHAN M A Q. Zebra mussels:enhancement of copper toxicity by high temperature and its relationship with respiration and metabolism[J]. Water Environment Research,2000,72(2):175-178. [45] PILEHVAR A, CORDERY K I, TOWN R M, et al. The synergistic toxicity of Cd(Ⅱ) and Cu(Ⅱ) to zebrafish (Danio rerio):effect of water hardness[J]. Chemosphere,2020,247:125942. [46] YIM J H, KIM K W, KIM S D. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna:prediction of acid mine drainage toxicity[J]. Journal of Hazardous Materials,2006,138(1):16-21. [47] ÇELEBI H, GÖK G, GÖK O. Adsorption capability of brewed tea waste in waters containing toxic lead(Ⅱ), cadmium (Ⅱ), nickel (Ⅱ), and zinc(Ⅱ) heavy metal ions[J]. Scientific Reports,2020,10:17570. [48] WANG Z, MEADOR J P, LEUNG K M Y. Metal toxicity to freshwater organisms as a function of pH:a meta-analysis[J]. Chemosphere,2016,144:1544-1552. [49] MOBERLY J G,STAVEN A, SANI R K, et al. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments[J]. Environmental Science & Technology,2010,44(19):7302-7308. [50] LI X F, WANG P F, FENG C L, et al. Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China[J]. Bulletin of Environmental Contamination and Toxicology,2019,103(1):120-126. [51] HOLTZE K. Effects of pH and ionic strength on aluminum toxicity to early developmental stages of rainbow trout (Salmo gairdneri Richardson)[R]. Rexdale, Canada:Ontario Ministry of the Environment,1983. [52] STARODUB M E, WONG P T S, MAYFIELD C I, et al. Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga[J]. Canadian Journal of Fisheries and Aquatic Sciences,1987,44(6):1173-1180. [53] MESSERLI M A, AMARAL-ZETTLER L A, ZETTLER E, et al. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile[J]. The Journal of Experimental Biology,2005,208(Pt 13):2569-2579. [54] RASHED M N. Monitoring of environmental heavy metals in fish from Nasser Lake[J]. Environment International, 2001,27(1):27-33. [55] HOSSAIN M B, BHUIYAN N Z, KASEM A, et al. Heavy metals in four marine fish and shrimp species from a subtropical coastal area:accumulation and consumer health risk assessment[J]. Biology,2022,11(12):1780. [56] FRÉMION F, BORDAS F, MOURIER B, et al. Influence of dams on sediment continuity:a study case of a natural metallic contamination[J]. The Science of the Total Environment,2016,547:282-294. [57] HATANO A, SHOJI R. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM)[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology,2010,151 (1):25-32. [58] WANG R F, ZHU L M, ZHANG J, et al. Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae[J]. Chemosphere,2020,247:125923. [59] ZHANG H, CAO H B, MENG Y B, et al. The toxicity of cadmium (Cd2+) towards embryos and pro-larva of soldatov's catfish (Silurus soldatovi)[J]. Ecotoxicology and Environmental Safety,2012,80:258-265. [60] IDRUS F A, BASRI M M, RAHIM K A A, et al. Concentrations of cadmium, copper, and zinc in Macrobrachium rosenbergii (giant freshwater prawn) from natural environment[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(3):350-355. [61] OLGUNOGLU M, OLGUNOGLUI, BAYHAN Y. Heavy metal concentrations (Cd, Pb, Cu, Zn, Fe) in giant red shrimp (Aristaeomorpha foliacea risso 1827) from the Mediterranean Sea[J]. Polish Journal of Environmental Studies,2015,24(2):631-635. [62] WU X Y, YANG Y F. Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source[J]. Journal of Food Composition and Analysis,2011,24(1):62-65. [63] EZEMONYE L I, ADEBAYO P O, ENUNEKU A A, et al. Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria[J]. Toxicology Reports,2019,6:1-9. [64] HIDAYATI N V, PRUDENT P, ASIA L, et al. Assessment of the ecological and human health risks from metals in shrimp aquaculture environments in Central Java, Indonesia[J]. Environmental Science and Pollution Research International,2020,27(33):41668-41687. [65] ZHANG C S, JIN Y, YU Y, et al. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902)[J]. Ecotoxicology and Environmental Safety,2021,208:111591. [66] DING Z L, KONG Y Q, SHAO X P, et al. Growth, antioxidant capacity, intestinal morphology, and metabolomic responses of juvenile oriental river prawn (Macrobrachium nipponense) to chronic lead exposure[J]. Chemosphere,2019,217:289-297. [67] ANANI O A, OLOMUKORO J O, Assessment of Metal Accumulation and Bioaccumulation Factor of Some Trace and Heavy Metals in Freshwater Prawn and Crab[M]//DIARTE-PLATA G, ESCAMILLA-MONTES R. Crustacea. London: IntechOpen, 2020. [68] MANYIN T, ROWE C L. Reproductive and life stage specific effects of aqueous copper on the grass shrimp, Palaemonetes pugio[J]. Marine Environmental Research,2010,69(3):152-157. [69] 王书莉. Cd2+、Pb2+、Cu2+浓度对克氏原螯虾生长及其体内富集的影响[D]. 扬州:扬州大学,2013. . [70] ALCORLO P, LOZANO I, BALTANÁS A. Heavy metals effects on life traits of juveniles of Procambarus clarkii[J]. AIMS Environmental Science,2019,6(3):147-166. [71] ZHANG L, ZHOU Y T, SONG Z W, et al. Mercury induced tissue damage, redox metabolism, ion transport, apoptosis, and intestinal microbiota change in red swamp crayfish (Procambarus clarkii):application of multi-omics analysis in risk assessment of Hg[J]. Antioxidants,2022,11(10):1944. [72] MAMDOUH S, MOHAMED A S, ALI MOHAMED H, et al. The effect of zinc concentration on physiological, immunological, and histological changes in crayfish (Procambarus clarkii) as bio-indicator for environment quality criteria[J]. Biological Trace Element Research,2022,200(1):375-384. [73] DUAN Y F, WANG Y, HUANG J H, et al. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei[J]. Marine Pollution Bulletin,2021,167:112220. [74] LI Y L, ZHOU X W, GUO W, et al. Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish, Procambarus clarkii[J]. Aquatic Toxicology,2023,265:106768. [75] CAPPARELLI M V, BORDON I C, ARAUJO G, et al. Combined effects of temperature and copper on oxygen consumption and antioxidant responses in the mudflat fiddler crab Minuca rapax (Brachyura, Ocypodidae)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2019,223:35-41. [76] WANG L, GUAN T Y, WANG G L, et al. Effects of copper on gill function of juvenile oriental river prawn (Macrobrachium nipponense):stress and toxic mechanism[J]. Aquatic Toxicology,2023,261:106631. [77] BAO J, XING Y N, FENG C C, et al. Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus[J]. Scientific Reports,2020,10(1):16700. [78] SHARMA K, GULATI R, BAMEL K, et al. Histological and biochemical evidence of Zinc toxicity in white leg shrimp, Litopenaeus vannamei Boone[J]. Indian Journal of Ecology,2023,50(5):1766-1771. [79] WU J P, CHEN H C. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei)[J]. Chemosphere,2004,57(11):1591-1598. [80] ZHANG C S, LI F H, XIANG J H. Acute effects of cadmium and copper on survival, oxygen consumption, ammonia-N excretion, and metal accumulation in juvenile Exopalaemon carinicauda[J]. Ecotoxicology and Environmental Safety,2014,104:209-214. [81] WEI K Q, YANG J X. Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii[J]. Fish & Shellfish Immunology,2016,52:221-229. [82] GUO H, LI K X, WANG W, et al. Effects of copper on hemocyte apoptosis, ROS production, and gene expression in white shrimp Litopenaeus vannamei[J]. Biological Trace Element Research,2017,179(2):318-326. [83] NURAN ERCAL B S P, HANDE GURER-ORHAN B S P, NUKHET AYKIN-BURNS B S P. Toxic metals and oxidative stress part Ⅰ:mechanisms involved in metal induced oxidative damage[J]. Current Topics in Medicinal Chemistry,2001,1(6):529-539. [84] RANI A, KUMAR A, LAL A, et al. Cellular mechanisms of cadmium-induced toxicity:a review[J]. International Journal of Environmental Health Research,2014,24(4):378-399. [85] JIAO L F, DAI T M, JIN M, et al. Transcriptome analysis of the hepatopancreas in the Litopenaeus vannamei responding to the lead stress[J]. Biological Trace Element Research,2021,199(3):1100-1109. [86] REBOLLEDO U A, PÁEZ-OSUNA F, FERNÁNDEZ R. Single and mixture toxicity of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn to the rotifer Proales similis under different salinities[J]. Environmental Pollution (Barking, Essex,2021,271:116357. [87] WANG L, FENG J B, WANG G L, et al. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense[J]. Ecotoxicology and Environmental Safety, 2021,224:112651. [88] WANG Z Q, YANG L L, ZHOU F, et al. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress[J]. Journal of Hazardous Materials,2023,448:130820. [89] ZHANG Y, LI Z Y, KHOLODKEVICH S, et al. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii)[J]. The Science of the Total Environment,2019,666:944-955. [90] GUO H, CHEN T C, LIANG Z, et al. iTRAQ and PRM-based comparative proteomic profiling in gills of white shrimp Litopenaeus vannamei under copper stress[J]. Chemosphere,2021,263:128270. [91] LIU X, JIANG H C, YE B Q, et al. Comparative transcriptome analysis of the gills and hepatopancreas from Macrobrachium rosenbergii exposed to the heavy metal Cadmium (Cd2+)[J]. Scientific Reports,2021,11:16140. [92] JIAO L F, DAI T M, CAO T L, et al. New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis[J]. Marine Pollution Bulletin,2020,160:111673. [93] MISHRA S, DUBEY R S. Heavy metal uptake and detoxification mechanisms in plants[J]. International Journal of Agricultural Research,2010,5(7):482-501 [94] QIAN Z Y, HOU D Q, GAO S, et al. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis[J]. Chemosphere,2024,361:142578.