Abstract:In order to investigate the toxic effects of florfenicol on large yellow croaker (Larimichthys crocea), large yellow croaker with body length of (11.21±1.24) cm and body weight of (14.53±2.12) g were reared in plastic PVC barrels with diameter of 1.0 m and water depth of 1.2 m, and fed diets containing 0.75 g/kg florfenicol (control group) and 3.75 g/kg florfenicol (high-dose group) at water temperature from 25.7 to 27.6 ℃ for 10 days. At the end of the fedding trail, intestinal tissues were randomly collected, and microbes, metabolome analysis and histological morphology observation were carried out to evaluate the effects of florfenicol on the gut microbiota and metabolome. Results showed that the α-diversity of gut microbiota was significantly decreased in the florfenicol-treated groups, with reduction in beneficial bacteria (e.g., Firmicutes) and increase in the proportions of Proteobacteria and Bacteroidetes, leading to dysbiosis of the gut microbiota. Metabolomic analysis revealed that there were decrease in beneficial metabolites such as S-methyl-L-cysteine in high-dose florfenicol treatment and increase in harmful metabolites like pyrrolizidine, while pathways related to aminoacyl-tRNA biosynthesis, D-amino acid metabolism, and ABC transporters were enriched, potentially affecting host immunity and metabolic functions. Histological observation found that high-dose group florfenicol caused inflammation in the intestine of large yellow croakers. Overall, while florfenicol effectively inhibits pathogenic bacteria, it significantly disrupts the gut microbiota ecosystem of large yellow croaker, indicating that florfenicol should be used judiciously in aquaculture and that ecological regulation measures should be explored to minimize its adverse effects. The finding provides theoretical basis for the scientific application of florfenicol in large yellow croaker farming.
[1] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2024中国渔业统计年鉴[M].北京:中国农业出版社,2024 [2] PREENA P G, SWAMINATHAN T R, KUMAR V J R, et al. Antimicrobial resistance in aquaculture:a crisis for concern[J]. Biologia,2020,75(9):1497-1517. [3] 王美茹,崔鹏飞,汝少国.养殖水环境中抗生素对鱼类肠道菌群结构、功能和抗性组的影响研究进展[J].生态毒理学报,2023,18(3):94-111. [4] 袁巍,徐云菲,宋广智.氟苯尼考对鳗鲡爱德华氏菌病的治疗效果[J].农业科技与装备,2013(3):20-21. [5] 李培. 乳酸乳球菌多肽和氟苯尼考对草鱼炎症的作用及其机理[D]. 南宁:广西大学,2023. [6] 张永刚,王政,邢丽红,等.口灌氟苯尼考对中华鳖组织损伤的病理学研究[J].安徽农业科学,2023,51(12):78-81. [7] 冯艳艳,李健,李吉涛,等.氟苯尼考对脊尾白虾(Exopalaemon carinicauda)免疫和抗氧化功能的影响[J].渔业科学进展,2017,38(5):140-147. [8] 成好学,王庚申,许叶祥,等.2种抗生素对大黄鱼肠道组织及紧密连接蛋白基因表达的影响[J].水产科学,2024,43(4):531-540. [9] 云霄.氟苯尼考对斑马鱼抗氧化、免疫及肠道菌群的影响[D].泰安:山东农业大学,2022. [10] 中国兽药典委员会.2020中国兽药典[M].北京:中国农业出版社,2020. [11] 杨先乐,农业部《新编渔药手册》编撰委员会.2005新编渔药手册[M].北京:中国农业出版社,2005. [12] ZENG Q F, LIAO C, TERHUNE J, et al.Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis[J]. Microbiome,2019,7(1):155. [13] YUN X, ZHOU J, WANG J T, et al.Biological toxicity effects of florfenicol on antioxidant, immunity and intestinal flora of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety,2023,265:115520. [14] ABDELHAMED H, OZDEMIR O, WALDBIESER G, et al.Effects of florfenicol feeding on diversity and composition of the intestinal microbiota of channel catfish (Ictalurus punctatus)[J]. Aquaculture Research,2019,50(12):3663-3672. [15] GUO X P, QIAN Z A, PAN Q Q, et al.Effects of florfenicol on intestinal histology, apoptosis and gut microbiota of Chinese mitten crab (Eriocheir sinensis)[J]. International Journal of Molecular Sciences,2023,24(5):4412. [16] KAYANI M U R, YU K, QIU Y S, et al.Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions[J]. Environmental Pollution,2021,278:116760. [17] ZHOU L, LIMBU S M, SHEN M L, et al.Environmental concentrations of antibiotics impair zebrafish gut health[J]. Environmental Pollution,2018,235:245-254. [18] ZHAO F, GONG Z L, YANG Y Y, et al.Effects of environmentally relevant concentrations of florfenicol on the glucose metabolism system, intestinal microbiome, and liver metabolome of zebrafish[J]. Science of The Total Environment,2024,938:173417. [19] SHIN N R, WHON T W, BAE J W.Proteobacteria:microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015,33(9):496-503. [20] MA J Y,PIAO X S, MAHFUZ S, et al.The interaction among gut microbes, the intestinal barrier and short chain fatty acids[J]. Animal Nutrition,2021,9:159-174. [21] STOJANOV S, BERLEC A, ŠTRUKELJ B.The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms,2020,8(11):1715. [22] SUN Y G, ZHANG S S, NIE Q X, et al.Gut firmicutes:relationship with dietary fiber and role in host homeostasis[J]. Critical Reviews in Food Science and Nutrition,2023,63(33):12073-12088. [23] GEWIDA A G A, ABOUZED T K, ABDELGHANY M F, et al.Dietary effect of S-methylmethionine sulfonium chloride on growth, serum biochemical parameters, body composition, and expression of some related genes in Oreochromis niloticus[J]. Annals of Animal Science,2024,24(1):151-160. [24] DROZDOV V N, SHIH E V, ASTAPOVSKIY A A, et al.Effect of 6-month S-methylmethionine intake on the quality of life and dyspepsia symptoms in patients with chronic gastritis[J]. Voprosy Pitaniia,2023,92(2):80-86. [25] EGEA M B, PIERCE G, SHAY N.Intake of S-methylmethionine alters glucose metabolism and hepatic gene expression in C57BL/6J high-fat-fed mice[J]. Foods, 2024,14(1):34. [26] XU J, WANG W Q, YANG X, et al.Pyrrolizidine alkaloids:an update on their metabolism and hepatotoxicity mechanism[J]. Liver Research,2019,3(3/4):176-184. [27] PAN Y Y, MA J, ZHAO H, et al.Hepatotoxicity screening and ranking of structurally different pyrrolizidine alkaloids in zebrafish[J]. Food and Chemical Toxicology,2023,178:113903. [28] NICHOLSON J K, HOLMES E, KINROSS J, et al.Host-gut microbiota metabolic interactions[J]. Science,2012,336(6086):1262-1267. [29] PÉREZ-COBAS A E, GOSALBES M J, FRIEDRICHS A, et al.Gut microbiota disturbance during antibiotic therapy:a multi-omic approach[J]. Gut,2013,62(11):1591-1601.