Effects of Filamentous Alga Chaetomorpha valida Degradation on Aquaculture Water Quality, and Growth and Immunity of Sea Cucumber Apostichopus japonicus
WANG Xin1, XING Ronglian1, ZHANG Hongxia1, LIU Chuyao1, WANG Linqian1, LIU Renyu1, CHEN Lihong1, XU Xiaoguang2, CAO Xuebin3, CHENG Cao4, SU Qun5
1. Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; 2. Cooperation and Operations Division of the Science and Education Park Management Office, Yantai University, Yantai 264005, China; 3. Yantai Jinghai Marine Fisheries Co., Ltd, Yantai, Shandong, Yantai 264006, China; 4. Anyuan Marine Breeding Co., Ltd, Yantai, Shandong, Yantai 264006, China; 5. Baoyuan Bio-Agri Science & Technology (Shandong) Co., Ltd, Yantai Shandong, Yantai 264006, China
Abstract:To investigate the ecological effects of the degradation of filamentous alga Chaetomorpha valida on the growth and immune response of sea cucumbers Apostichopus japonicus, an indoor cultivation experiment imitating sea cucumber was conducted. sea cucumber were reared in natural seawater (control group) and 150 g (wet weight) of frozen death filamentous alga C. valida (alga treatment group) for 20 d at water temperature of (17.0±0.5) ℃. The immune indices including activities of superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase, and total antioxidant capacity and malondialdehyde contents were determined in the body wall and intestine of the sea cucumber as well as the physicochemical indices in water on the 0th, 5th, 10th, 15th and 20th days of the culture. The resulted showed that the concentrations of ammonia nitrogen and nitrite nitrogen were significantly elevated in the alga treatment group compared to the control group (P<0.05) during the C. valida degradation process, superoxide dismutase and catalase activities and total antioxidant capacity were shown significantly higher in the body wall and intestine than that in the control group from 0 d to 10 d in degradation (P<0.05). The activities of superoxide dismutase and catalase showed a decreasing trend, and both activities were significantly lower in the algal treatment group than those in the control group(P<0.05) from 15 d to 20 d. During the degradation process of C. valida, the sea cucumber had growth rate of 0.18%/d, significantly lower than the sea cucumber in the control group did (P<0.05). The levels of malondialdehyde were found to be gradually increased in the body wall and intestines of sea cucumber. The ecological effects caused by the degradation of C. valida led to reduce the growth rate of sea cucumberand to damage their immune system. The findings provide new theoretical support and basis for the healthy breeding and scientific management of A. japonicus.
王鑫, 邢荣莲, 张洪霞, 刘楚瑶, 王琳倩, 刘仁煜, 陈丽红, 徐晓光, 曹学彬, 程操, 苏群. 强壮硬毛藻降解对养殖水体水质和仿刺参生长 与免疫的影响[J]. 水产科学, 2025, 44(4): 534-543.
WANG Xin, XING Ronglian, ZHANG Hongxia, LIU Chuyao, WANG Linqian, LIU Renyu, CHEN Lihong, XU Xiaoguang, CAO Xuebin, CHENG Cao, SU Qun. Effects of Filamentous Alga Chaetomorpha valida Degradation on Aquaculture Water Quality, and Growth and Immunity of Sea Cucumber Apostichopus japonicus. Fisheries Science, 2025, 44(4): 534-543.
[1]曹金凤,李秋芬,黄经献,等.温度和光照强度对强壮硬毛藻氮磷营养盐吸收效果的影响[J].渔业科学进展,2024,45(2):105-113. [2]迟永雪,王丽梅,栾日孝,等.中国硬毛藻属新记录种—强壮硬毛藻[J].水产科学,2009,28(3):162-163. [3]邓蕴彦,汤晓荣,黄冰心,等.强壮硬毛藻(Chaetomorpha valida)的温度性质及其在中国海藻区系中的扩散潜力[J].海洋与湖沼,2011,42(3):404-408. [4]孙旭.富营养化湖泊底栖动物对沉积物氮转化菌群落结构和功能的影响[D].南京:南京大学,2015. [5]彭吉星,赵新楠,宋冬茹,等.不同养殖模式和产地刺参营养功能成分比较分析[J].中国渔业质量与标准,2023,13(2):1-10. [6]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2023中国渔业统计年鉴[M].北京:中国农业出版社,2023:23-28. [7]赵斌,胡炜,李成林,等.刺参养殖池塘浮游和底栖藻类群落及水质特征[J].广西科学院学报,2020,36(4):399-405. [8]王敏.强壮硬毛藻对刺参养殖区甲烷产生与排放的影响[D].烟台:烟台大学,2021. [9]邵逸文.强壮硬毛藻对刺参养殖池塘沉积物-水界面氮、磷营养盐水平的影响[D].烟台:烟台大学,2019. [10]孟祥森,张文斌,高丽,等.绿潮硬毛藻分解对天鹅湖水体氮磷水平的影响[J].环境科学研究,2017,30(5):697-704. [11]SALOVIUS S, BONSDORFF E. Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora glomerata and Pilayella littoralis)[J]. Journal of Experimental Marine Biology and Ecology,2004,298(1):93-109. [12]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望[J].水产科学,2006,25(4):198-201. [13]李学刚,宋金明,袁华茂,等.盐酸浸取-次溴酸盐氧化法测定海洋沉积物中的氨氮[J].岩矿测试,2011,30(5):550-554. [14]阚长利,李久民,侯敬,等.葛根素对子痫前期大鼠模型胎盘氧化应激及免疫状态的影响[J].中国临床药理学杂志,2019,35(8):801-803. [15]王昕宇,陶文卿,吕慧超,等.硫化物胁迫对刺参(Apostichopus japonicus)幼参的急性毒性效应及抗氧化防御系统的影响[J].烟台大学学报(自然科学与工程版),2020,33(3):264-269. [16]田相利,何瑞鹏,钱圆,等.干露胁迫对刺参体壁非特异性免疫的影响[J].河北渔业,2014(7):21-26. [17]沈文飚,徐朗莱,叶茂炳,等.氮蓝四唑光化还原法测定超氧化物歧化酶活性的适宜条件[J].南京农业大学学报,1996,19(2):101-102. [18]田其英.豆浆中过氧化氢酶活性的测定研究[J].食品科技,2022,47(2):283-286. [19]WANG C, YU R C, ZHOU M J. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species[J]. Harmful Algae,2012,16:12-19. [20]ZHANG L, GE F J, ZHANG S X, et al. Potential effects of Cladophora oligoclora decomposition:microhabitat variation and Microcystis aeruginosa growth response[J]. Ecotoxicology and Environmental Safety,2022,247:114236. [21]王玉明,周盼盼,周维成,等.刚毛藻腐烂过程中溶解性有机物的释放和细菌群落的变化[J].水生生物学报,2023,47(1):80-91. [22]郭西亚,常闻捷,杨志伟,等.蓝藻消亡分解过程中的水质变化及营养盐释放特征[J].中国环境监测,2024,40(4):143-152. [23]ZHANG L, HUANG S Z, PENG X, et al. Potential ecological implication of Cladophora oligoclora decomposition:characteristics of nutrient migration, transformation, and response of bacterial community structure[J]. Water Research,2021,190:116741. [24]薛素燕.养殖刺参(Apostichopus japonicus)的生态习性及代谢生理的初步研究[D].青岛:中国海洋大学,2007. [25]姚永锋,张继红,方建光,等.温度、饵料质量对不同规格刺参摄食率、吸收效率的影响[J].水产学报,2014,38(7):992-998. [26]王梦杰,陈建华,王海华.氨氮对水产动物的毒性效应研究进展[J].江西水产科技,2019(2):38-43. [27]ZHU L, SHI W Q, DAM B V, et al. Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes[J]. Environmental Science & Technology,2020,54(10):6194-6201. [28]翟浩杰.饲料中添加甘露寡糖对刺参生长性能、肠道及免疫功能的影响[D].大连:大连海洋大学,2022. [29]ZHANG R Q, CHEN Q X, ZHENG W Z, et al. Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol[J]. The International Journal of Biochemistry & Cell Biology,2000,32(8):865-872. [30]吴乐.稻田施肥后水体氨氮对克氏原螯虾胁迫作用的模拟研究[D].上海:上海海洋大学,2022. [31]钟君伟,朱永安,付佩胜,等.亚硝酸盐氮对克氏原螯虾成虾的毒性及其抗病因子的影响[J].长江大学学报(自科版),2014,11(5):36-40. [32]王冲,宋善旗,李大成,等.环境胁迫因子对刺参生理影响及作用机制研究进展[J].河北渔业,2022(11):34-40. [33]TAN J, SUN X J, GAO F, et al. Immune responses of the sea cucumber Apostichopus japonicus to stress in two different transport systems[J]. Aquaculture Research,2016,47(7):2114-2122. [34]CASTEX M, LEMAIRE P, WABETE N, et al. Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge[J]. Fish & Shellfish Immunology,2010,28(4):622-631. [35]李冬琴,陈桂葵,郑海,等.镉对两品种玉豆生长和抗氧化酶的影响[J].农业环境科学学报,2015,34(2):221-226. [36]JIA R, LIU B L, HAN C, et al. Effects of ammonia exposure on stress and immune response in juvenile turbot (Scophthalmus maximus)[J]. Aquaculture Research,2017,48(6):3149-3162. [37]WANG F F, HUANG L, LIAO M Q, et al. Pva-miR-252 participates in ammonia nitrogen-induced oxidative stress by modulating autophagy in Penaeus vannamei[J]. Ecotoxicology and Environmental Safety,2021,225:112774. [38]陈亭君,刘建勇,申玉春,等.亚硝酸盐氮对日本囊对虾幼虾的急性毒性研究[J].渔业现代化,2019,46(3):35-40. [39]吕晓燕,李嘉尧,方燕,等.亚硝酸盐对红螯光壳螯虾不同组织免疫相关酶活性及超微结构的影响[J].水产学报,2010,34(12):1812-1820. [40]胡益鸣,李琪,刘士凯,等.温度和盐度急性胁迫对岩牡蛎存活及免疫指标的影响[J].中国水产科学,2020,27(3):286-294. [41]王佳雯,卢洁,姚托,等.环境因子和免疫刺激对香港牡蛎免疫指标的影响[J].南方水产科学,2021,17(4):18-26. [42]肖杰.凡纳滨对虾氨氮和亚硝酸氮应激和耐受机制的初步研究[D].武汉:华中农业大学,2020. [43]ZHAO Y P, ZHANG Z Q, WANG G X, et al. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment[J]. Science of the Total Environment,2019,650:163-172.