|
|
鱼类重要免疫器官抗菌机制的研究进展 |
罗智文, 董志祥, 林连兵, 张棋麟 |
昆明理工大学 生命科学与技术学院,云南省高校饲用抗生素替代技术工程研究中心,云南 昆明 650500 |
|
Advances on Immunological Mechanisms of Important Immune Organs against Pathogenic Microorganisms in Fish: a Review |
LUO Zhiwen, DONG Zhixiang, LIN Lianbing, ZHANG Qilin |
Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China |
引用本文: |
罗智文, 董志祥, 林连兵, 张棋麟. 鱼类重要免疫器官抗菌机制的研究进展[J]. 水产科学, 2021, 40(4): 624-634.
LUO Zhiwen, DONG Zhixiang, LIN Lianbing, ZHANG Qilin. Advances on Immunological Mechanisms of Important Immune Organs against Pathogenic Microorganisms in Fish: a Review. Fisheries Science, 2021, 40(4): 624-634.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.19236 或 http://www.shchkx.com/CN/Y2021/V40/I4/624 |
[1]Walker P J, Winton J R. Emerging viral diseases of fish and shrimp[J].Veterinary Research,2010,41(6):51. [2]Ye H, Lin Q S, Luo H. Applications of transcriptomics and proteomics in understanding fish immunity[J].Fish & Shellfish Immunology,2018,77:319-327. [3]李桃秋.我国水产养殖病害控制技术现状与发展趋势[J].农家参谋,2019,609(3):116. [4]Wang B, Gu H J, Huang H Q, et al. Characterization, expression, and antimicrobial activity of histones from Japanese flounder Paralichthys olivaceus[J].Fish & Shellfish Immunology,2020,96:235-244. [5]Huang L, Bai L, Chen Y D, et al. Identification, expression profile and analysis of the antimicrobial activity of collectin 11 (CL-11, CL-K1), a novel complement-associated pattern recognition molecule, in half-smooth tongue sole (Cynoglossus semilaevis)[J].Fish & Shellfish Immunology,2019,95:679-687. [6]Bo J, Yang Y, Zheng R H, et al. Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus[J].Fish & Shellfish Immunology,2019,93:1007-1017. [7]Rauta P R, Nayak B, Das S. Immune system and immune responses in fish and their role in comparative immunity study:a model for higher organisms[J].Immunology Letters,2012,148(1):23-33. [8]Boyton R J, Openshaw P J. Pulmonary defences to acute respiratory infection[J].British Medical Bulletin,2002,61:1-12. [9]Litman G W, Cannon J P, Dishaw L J. Reconstructing immune phylogeny:new perspectives[J].Nature Reviews Immunology,2005,5(11):866-879. [10]Wangkahart E, Secombes C J, Wang T H. Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture[J].Frontiers in Immunology,2019,9:3054. [11]Medzhitov R. Recognition of microorganisms and activation of the immune response[J].Nature,2007,449(7164):819-826. [12]张媛媛,宋理平.鱼类免疫系统的研究进展[J].河北渔业,2018(2):49-56. [13]Tafalla C, Bøgwald J, Dalmo R A. Adjuvants and immunostimulants in fish vaccines:current knowledge and future perspectives[J].Fish & Shellfish Immunology,2013,35(6):1740-1750. [14]张永安,孙宝剑,聂品.鱼类免疫组织和细胞的研究概况[J].水生生物学报,2000,24(6):648-654. [15]Hitzfeld B. Fish immune system[M]//Vohr H W. Encyclopedic reference of immunotoxicology. Berlin,Heidelberg:Springer-Verlag,2005:242-245. [16]Press C M, Evensen. The morphology of the immune system in teleost fishes[J].Fish & Shellfish Immunology,1999,9(4):309-318. [17]Chen J Y, Lin W J, Lin T L. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells[J].Peptides,2009,30(9):1636-1642. [18]Carroll M C. The complement system in B cell regulation[J].Molecular Immunology,2004,41(2/3):141-146. [19]Hawlisch H, Köhl J. Complement and Toll-like receptors:key regulators of adaptive immune responses[J].Molecular Immunology,2006,43(1/2):13-21. [20]Zou J, Grabowski P S, Cunningham C, et al. Molecular cloning of interleukin 1 beta from rainbow trout Oncorhynchus mykiss reveals no evidence of an ice cut site[J].Cytokine,1999,11(8):552-560. [21]Xu J, Feng L, Jiang W D, et al. Effects of dietary protein levels on the disease resistance, immune function and physical barrier function in the gill of grass carp (Ctenopharyngodon idella) after challenged with Flavobacterium columnare[J].Fish & Shellfish Immunology,2016,57:1-16. [22]Geven E J W, Klaren P H M. The teleost head kidney:integrating thyroid and immune signalling[J].Developmental and Comparative Immunology,2017,66:73-83. [23]Fänge R, Nilsson S. The fish spleen:structure and function[J].Experientia,1985,41(2):152-158. [24]Parker G A, Picut C A. Liver immunobiology[J].Toxicologic Pathology,2005,33(1):52-62. [25]Boyle D, Al-Bairuty G A, Ramsden C S, et al. Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury[J].Aquatic Toxicology,2013,126:116-127. [26]Ayadi I, Monteiro S M, Regaya I, et al. Biochemical and histological changes in the liver and gills of Nile tilapia Oreochromis niloticus exposed to Red 195 dye[J].RSC Advances,2015,5(106):87168-87178. [27]Au D W T. The application of histo-cytopathological biomarkers in marine pollution monitoring:a review[J].Marine Pollution Bulletin,2004,48(9/10):817-834. [28]Zwollo P, Cole S, Bromage E, et al. B cell heterogeneity in the teleost kidney:evidence for a maturation gradient from anterior to posterior kidney[J].Journal of Immunology,2005,174(11):6608-6616. [29]Bromage E, Kaattari I M, Zwollo P, et al. Plasmablast and plasma cell production and distribution in trout immune tissues[J].Journal of Immunology,2004,173(12):7317-7323. [30]Meseguer J, López-Ruiz A, Garcí-Ayala A. Reticulo-endothelial stroma of the head-kidney from the seawater teleost gilthead seabream (Sparus aurata L.):an ultrastructural and cytochemical study[J].The Anatomical Record,1995,241(3):303-309. [31]Dannevig B H, Lauve A, Press C M, et al. Receptor-mediated endocytosis and phagocytosis by rainbow trout head kidney sinusoidal cells[J].Fish & Shellfish Immunology,1994,4(1):3-18. [32]Whyte S K. The innate immune response of finfish—a review of current knowledge[J].Fish & Shellfish Immunology,2007,23(6):1127-1151. [33]Chaves-Pozo E, Muóoz P, López-Muñoz A, et al. Early innate immune response and redistribution of inflammatory cells in the bony fish gilthead seabream experimentally infected with Vibrio anguillarum[J].Cell and Tissue Research,2005,320(1):61-68. [34]Khieokhajonkhet A, Aeksiri N, Kaneko G. Molecular characterization and homology modeling of liver X receptor in Asian seabass, Lates calcarifer:predicted functions in reproduction and lipid metabolism[J].Fish Physiology and Biochemistry,2019,45(2):523-538. [35]Robinson M W, Harmon C, O′Farrelly C. Liver immunology and its role in inflammation and homeostasis[J].Cellular & Molecular Immunology,2016,13(3):267-276. [36]Xu Z, Parra D, Gómez D, et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(32):13097-13102. [37]Buchmann K. Immune mechanisms in fish skin against monogeneans—a model[J].Folia Parasitologica,1999,46(1):1-9. [38]Kulczykowska E. Stress response system in the fish skin-welfare measures revisited[J].Frontiers in Physiology,2019,10:72. [39]Alexander J B, Ingram G A. Noncellular nonspecific defence mechanisms of fish[J].Annual Review of Fish Diseases,1992,2:249-279. [40]Gomez D, Sunyer J O, Salinas I. The mucosal immune system of fish:the evolution of tolerating commensals while fighting pathogens[J].Fish & Shellfish Immunology,2013,35(6):1729-1739. [41]Baldissera M D, Souza C F, Junior G B, et al. Citrobacter freundii impairs the phosphoryl transfer network in the gills of Rhamdia quelen:impairment of bioenergetics homeostasis[J].Microbial Pathogenesis,2018,117:157-161. [42]Lü A J, Hu X C, Xue J, et al. Gene expression profiling in the skin of zebrafish infected with Citrobacter freundii[J].Fish & Shellfish Immunology,2012,32(2):273-283. [43]Karunasagar I, Karunasagar I, Pai R. Systemic Citr-obacter freundii infection in common carp, Cyprinus carpio L., fingerlings[J].Journal of Fish Diseases,1992,15(1):95-98. [44]Gallani S U, Sebastião F D A, Valladão G M R, et al. Pathogenesis of mixed infection by Spironucleus sp. and Citrobacter freundii in freshwater angelfish Pterophyllum scalare[J].Microbial Pathogenesis,2016,100:119-123. [45]Tavares G C, Carvalho A F, Pereira F L, et al. Transcriptome and proteome of fish-pathogenic Streptococcus agalactiae are modulated by temperature[J].Frontiers in Microbiology,2018,9:2639. [46]Amal M N A, Zamri-Saad M, Iftikhar A R, et al. An outbreak of Streptococcus agalactiae infection in cage-cultured golden pompano, Trachinotus blochii (Lacépède), in Malaysia[J].Journal of Fish Diseases,2012,35(11):849-852. [47]Mian G F, Godoy D T, Leal C A G, et al. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia[J].Veterinary Microbiology,2009,136(1/2):180-183. [48]Chideroli R T, Amoroso N, Mainardi R M, et al. Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus agalactiae in fish farms from Brazil[J].Aquaculture,2017,479:45-51. [49]El-Bahar H M, Ali N G, Aboyadak I M, et al. Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus[J].International Microbiology,2019,22(4):479-490. [50]Delamare-Deboutteville J, Kawasaki M, Zoccola E, et al. Interactions of head-kidney leucocytes from giant grouper, Epinephelus lanceolatus, with pathogenic Streptococcus agalactiae strains from marine and terrestrial origins[J].Fish & Shellfish Immunology,2019,90:250-263. [51]Abarike E D, Jian J C, Tang J F, et al. Traditional Chinese medicine enhances growth, immune response, and resistance to Streptococcus agalactiae in Nile tilapia[J].Journal of Aquatic Animal Health,2019,31(1):46-55. [52]Zhang D F, Ke X L, Liu Z G, et al. Capsular polysaccharide of Streptococcus agalactiae is an essential virulence factor for infection in Nile tilapia (Oreochromis niloticus Linn.)[J].Journal of Fish Diseases,2019,42(2):293-302. [53]Sirimanapong W, Thompson K D, Shinn A P, et al. Streptococcus agalactiae infection kills red tilapia with chronic Francisella noatunensis infection more rapidly than the fish without the infection[J].Fish & Shellfish Immunology,2018,81:221-232. [54]Bandeira Junior G, dos Santos A C, Souza C D F, et al. Citrobacter freundii infection in silver catfish (Rhamdia quelen):hematological and histological alterations[J].Microbial Pathogenesis,2018,125:276-280. [55]吕爱军,胡秀彩,朱静榕,等.弗氏柠檬酸杆菌感染诱导斑马鱼皮肤免疫相关基因的差异表达[J].水产学报,2012,36(3):359-366. [56]胡秀彩,吕爱军,刘云燕,等.罗非鱼肠道中弗氏柠檬酸杆菌的分离与鉴定[J].黑龙江畜牧兽医,2014(21):174-176. [57]Han C, Li Q, Chen Q H, et al. Transcriptome analysis of the spleen provides insight into the immunoregulation of Mastacembelus armatus under Aeromonas veronii infection[J].Fish & Shellfish Immunology,2019,88:272-283. [58]Ran C, Qin C B, Xie M X, et al. Aeromonas veronii and aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish[J].Environmental Microbiology,2018,20(9):3442-3456. [59]Gholamhosseini A, Taghadosi V, Shiry N, et al. First isolation and identification of Aeromonas veronii and Chryseobacterium joostei from reared sturgeons in Fars Province, Iran[J]. Veterinary Research Forum:an International Quarterly Journal,2018,9(2):113-119. [60]Li Z Z, Wang X M, Chen C X, et al. Transcriptome profiles in the spleen of African catfish (Clarias gariepinus) challenged with Aeromonas veronii[J].Fish & Shellfish Immunology,2019,86:858-867. [61]Mohamad N, Roseli F A M, Azmai M N A, et al. Natural concurrent infection of Vibrio harveyi and V. alginolyticus in cultured hybrid groupers in Malaysia[J].Journal of Aquatic Animal Health,2019,31(1):88-96. [62]Peng H Y, Yang B X, Li B Y, et al. Comparative transcriptomic analysis reveals the gene expression profiles in the liver and spleen of Japanese pufferfish (Takifugu rubripes) in response to Vibrio harveyi infection[J].Fish & Shellfish Immunology,2019,90:308-316. [63]Amar E C, Faisan J P, Apines-Amar M J S, et al. Temporal changes in innate immunity parameters, epinecidin gene expression, and mortality in orange-spotted grouper, Epinephelus coioides experimentally infected with a fish pathogen, Vibrio harveyi JML1[J].Fish & Shellfish Immunology,2017,69:153-163. [64]Cao Z J, Wang L, Xiang Y J, et al. MHC class Ⅱα polymorphism and its association with resistance/susceptibility to Vibrio harveyi in golden pompano (Trachinotus ovatus)[J].Fish & Shellfish Immunology,2018,80:302-310. [65]张志鹏,王会,阎华,等.致病性荧光假单胞菌FK-1的分离鉴定及其感染草鱼后免疫因子的变化研究[J].江苏农业科学,2018,46(19):190-194. [66]邓显文,谢芝勋,刘加波,等.罗非鱼荧光假单胞菌的分离鉴定[J].广西农业科学,2010,41(6):612-615. [67]Zhou Z J, Zhang L, Sun L. Pseudomonas fluorescens:fur is required for multiple biological properties associated with pathogenesis[J].Veterinary Microbiology,2015,175(1):145-149. [68]Dubey S, Maiti B, Kim S H, et al. Genotypic and phenotypic characterization of Edwardsiella isolates from different fish species and geographical areas in Asia:implications for vaccine development[J].Journal of Fish Diseases,2019,42(6):835-850. [69]Rousselet E, Stacy N I, Rotstein D S, et al. Systemic Edwardsiella tarda infection in a Western African lungfish (Protopterus annectens) with cytologic observation of heterophil projections[J].Journal of Fish Diseases,2018,41(9):1453-1458. [70]于新然,姚洪,叶仕根,等.养殖大菱鲆感染迟缓爱德华氏菌的分离、毒力基因及ERIC-PCR分析[J].大连海洋大学学报,2018,33(2):169-174. [71]吴勇亮,苗鹏飞,于辉,等.鳜鱼致病性迟缓爱德华氏菌的分离鉴定及药敏试验[J].南方农业学报,2018,49(4):794-799. [72]Erfanmanesh A, Beikzadeh B, Aziz Mohseni F, et al. Ulcerative dermatitis in barramundi due to coinfection with Streptococcus iniae and Shewanella algae[J].Diseases of Aquatic Organisms,2019,134(2):89-97. [73]罗晓雯,李莉,朱永肖,等.鱼类海豚链球菌病研究进展[J].水产科学,2018,37(6):847-854. [74]Rahmatullah M, Ariff M, Kahieshesfandiari M, et al. Isolation and pathogenicity of Streptococcus iniae in cultured red hybrid tilapia in Malaysia[J].Journal of Aquatic Animal Health,2017,29(4):208-213. [75]Ortega C, García I, Irgang R, et al. First identification and characterization of Streptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico[J].Journal of Fish Diseases,2018,41(5):773-782. [76]李伟.鱼类细菌性烂鳃病的诊断与防治措施[J].河北渔业,2012(8):48-49. [77]Decostere A, Haesebrouck F, Devriese L A. Characterization of four Flavobacterium columnare (Flexibacter columnaris) strains isolated from tropical fish[J].Veterinary Microbiology,1998,62(1):35-45. [78]李军,闵正沛,徐伯亥,等.草鱼肠型点状气单胞菌的分离和鉴定[J].水利渔业,2007,27(2):107-108. [79]Ghatak S, Blom J, Das S, et al. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila[J].Antonie Van Leeuwenhoek,2016,109(7):945-956. [80]Baldissera M D, Souza C F, Parmeggiani B, et al. The disturbance of antioxidant/oxidant balance in fish experimentally infected by Aeromonas caviae:relationship with disease pathophysiology[J].Microbial Pathogenesis,2018,122:53-57. [81]王凤青,孙玉增,任利华,等.海水养殖中水产动物主要致病弧菌研究进展[J].中国渔业质量与标准,2018,8(2):49-56. [82]Callol A, Pajuelo D, Ebbesson L, et al. Early steps in the European eel (Anguilla anguilla)-Vibrio vulnificus interaction in the gills:role of the RtxA13 toxin[J].Fish & Shellfish Immunology,2015,43(2):502-509. [83]Marco-Noales E, Milán M, Fouz B, et al. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2)[J].Applied and Environmental Microbiology,2001,67(10):4717-4725. [84]杨昆明,张文润,马江霞,等.鲟源致病性鲁氏耶尔森菌的分离、鉴定及药敏研究[J].水产科学,2019,38(1):48-54. [85]Awad E, Austin D, Lyndon A, et al. Possible effect of hala extract (Pandanus tectorius) on immune status, anti-tumour and resistance to Yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss)[J].Fish & Shellfish Immunology,2019,87:620-626. [86]Kumar G, Menanteau-Ledouble S, Saleh M, et al. Yersinia ruckeri, the causative agent of enteric redmouth disease in fish[J].Veterinary Research,2015,46(1):103. [87]Li S W, Zhang Y, Cao Y S, et al. Transcriptome profiles of Amur sturgeon spleen in response to Yersinia ruckeri infection[J].Fish & Shellfish Immunology,2017,70:451-460. [88]Wang G L, Yuan S P, Jin S. Nocardiosis in large yellow croaker, Larimichthys crocea (Richardson)[J].Journal of Fish Diseases,2005,28(6):339-345. [89]Ho P, Byadgi O, Wang P, et al. Identification, molecular cloning of IL-1β and its expression profile during Nocardia seriolae infection in largemouth bass, Micropterus salmoides[J]. International Journal of Molecular Sciences,2016,17(10):1670. [90]Byadgi O, Chen C W, Wang P, et al. De novo transcriptome analysis of differential functional gene expression in largemouth bass (Micropterus salmoides) after challenge with Nocardia seriolae[J].International Journal of Molecular Sciences,2016,17(8):1315. [91]Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J].Physiological Reviews,2005,85(1):97-177. [92]Herrero A, Thompson K D, Ashby A, et al. Complex gill disease:an emerging syndrome in farmed Atlantic salmon (Salmo salar L.)[J].Journal of Comparative Pathology,2018,163:23-28. [93]Campos-Perez J J, Ward M, Grabowski P S, et al. The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the gram-positive pathogen Renibacterium salmoninarum[J].Immunology,2000,99(1):153-161. [94]朱潜,姚雪梅,沈锋,等.鲫鳃出血病2种病原菌的分离及鉴定[J].淡水渔业,2018,48(5):61-65. [95]Zhang Q L, Dong Z X, Luo Z W, et al. MicroRNA profile of immune response in gills of zebrafish (Danio rerio) upon Staphylococcus aureus infection[J].Fish & Shellfish Immunology,2019,87:307-314. [96]Gjessing M C, Thoen E, Tengs T, et al. Salmon gill poxvirus, a recently characterized infectious agent of multifactorial gill disease in freshwater- and seawater-reared Atlantic salmon[J].Journal of Fish Diseases,2017,40(10):1253-1265. [97]Liu Y, Zhang H L, Liu Y J, et al. Determination of the heterogeneous interactome between Edwardsiella tarda and fish gills[J].Journal of Proteomics,2012,75(4):1119-1128. [98]Sellegounder D, Gupta Y R, Murugananthkumar R, et al. Enterotoxic effects of Aeromonas hydrophila infection in the catfish, Clarias gariepinus:biochemical, histological and proteome analyses[J].Veterinary Immunology and Immunopathology,2018,204:1-10. [99]Liu C, Chang O Q, Zhang D F, et al. Aeromonas shuberti as a cause of multi-organ necrosis in internal organs of Nile tilapia, Oreochromis niloticus[J].Journal of Fish Diseases,2018,41(10):1529-1538. [100]蒋自立,李春涛.黄颡鱼嗜水气单胞菌对草鱼幼鱼肝·肾和脾的影响[J].安徽农业科学,2012,40(10):5946-5949. [101]Kumar G, Hummel K, Noebauer K, et al. Proteome analysis reveals a role of rainbow trout lymphoid organs during Yersinia ruckeri infection process[J].Scientific Reports,2018,8(1):13998. [102]Castro R, Coll J, Blanco M D M, et al. Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas[J].Veterinary Research,2019,50(1):32. [103]Byadgi O, Chen Y C, Barnes A C, et al. Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae[J].Fish & Shellfish Immunology,2016,58:593-603. [104]Shahi N, Ardó L, Fazekas G, et al. Immunogene expression in head kidney and spleen of common carp (Cyprinus carpio L.) following thermal stress and challenge with Gram-negative bacterium, Aeromonas hydrophila[J].Aquaculture International,2018,26(3):727-741. [105]孙冰,韩代书.Toll样受体信号通路的负调控[J].生物化学与生物物理进展,2009,36(12):1516-1522. [106]Köbis J M, Rebl A, Kühn C, et al. Comparison of splenic transcriptome activity of two rainbow trout strains differing in robustness under regional aquaculture conditions[J].Molecular Biology Reports,2013,40(2):1955-1966. [107]Ohta Y, Landis E, Boulay T, et al. Homologs of CD83 from elasmobranch and teleost fish[J].Journal of Immunology,2004,173(7):4553-4560. [108]Meng X Z, Shen Y B, Wang S T, et al. Complement component 3 (C3):an important role in grass carp (Ctenopharyngodon idella) experimentally exposed to Aeromonas hydrophila[J].Fish & Shellfish Immunology,2019,88:189-197. [109]Long M, Zhao J, Li T T, et al. Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida[J]. Journal of Proteomics,2015,122:41-54. [110]Jiang Y L, Feng S S, Zhang S H, et al. Transcriptome signatures in common carp spleen in response to Aeromonas hydrophila infection[J].Fish & Shellfish Immunology,2016,57:41-48. [111]Qin C J, Gong Q, Wen Z Y, et al. Transcriptome analysis of the spleen of the darkbarbel catfish Pelteobagrus vachellii in response to Aeromonas hydrophila infection[J].Fish & Shellfish Immunology,2017,70:498-506. [112]Freitas-Lopes M A, Mafra K, David B A, et al. Differential location and distribution of hepatic immune cells[J].Cells,2017,6(4):48. [113]Knolle P A, Gerken G. Local control of the immune response in the liver[J].Immunological Reviews,2000,174(1):21-34. [114]刘问.嗜水气单胞菌感染青鱼肝脏的蛋白质组学分析[J].水生生物学报,2019,43(2):330-339. [115]Causey D R, Pohl M A N, Stead D, et al. High-throughput proteomic profiling of the fish liver following bacterial infection[J].BMC Genomics,2018,19(1):719. [116]Wang S T, Meng X Z, Li L S, et al. Biological parameters, immune enzymes, and histological alterations in the livers of grass carp infected with Aeromonas hydrophila[J].Fish & Shellfish Immunology,2017,70:121-128. [117]Li S W, Wang D, Cao Y S, et al. Transcriptome profile of Amur sturgeon (Acipenser schrenckii) liver provides insights into immune modulation in response to Yersinia ruckeri infection[J].Aquaculture,2018,492:137-146. [118]Rombout J H W M, Abelli L, Picchietti S, et al. Teleost intestinal immunology[J].Fish & Shellfish Immunology,2011,31(5):616-626. [119]Minghetti M, Drieschner C, Bramaz N, et al. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC[J].Cell Biology and Toxicology,2017,33(6):539-555. [120]Song Z X, Jiang W D, Liu Y, et al. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella)[J].Fish & Shellfish Immunology,2017,66:497-523. [121]Zhu L Y, Nie L, Zhu G, et al. Advances in research of fish immune-relevant genes:a comparative overview of innate and adaptive immunity in teleosts[J].Developmental and Comparative Immunology,2013,39(1/2):39-62. [122]Nowarski R, Jackson R, Flavell R A. The stromal intervention:regulation of immunity and inflammation at the epithelial-mesenchymal barrier[J].Cell,2017,168(3):362-375. [123]Tao S S, Zhu L X, Lee P, et al. Negative control of TLR3 signaling by TICAM1 down-regulation[J].American Journal of Respiratory Cell and Molecular Biology,2012,46(5):660-667. [124]Song X H, Hu X L, Sun B Y, et al. A transcriptome analysis focusing on inflammation-related genes of grass carp intestines following infection with Aeromonas hydrophila[J].Scientific Reports,2017,7:40777. [125]Li C, Zhang Y, Wang R J, et al. RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus[J].Fish & Shellfish Immunology,2012,32(5):816-827. [126]Brinchmann M F. Immune relevant molecules identified in the skin mucus of fish using -omics technologies[J].Molecular BioSystems,2016,12(7):2056-2063. [127]Wang R X, Hu X C, Lü A J, et al. Transcriptome analysis in the skin of Carassius auratus challenged with Aeromonas hydrophila[J].Fish & Shellfish Immunology,2019,94:510-516. [128]Wu X M, Cao L, Hu Y W, et al. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae[J].Fish & Shellfish Immunology,2019,94:355-372. [129]Caipang C M A, Lazado C C, Brinchmann M F, et al. Differential expression of immune and stress genes in the skin of Atlantic cod (Gadus morhua)[J].Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics,2011,6(2):158-162. [130]Guardiola F A, Cuesta A, Abellán E, et al. Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish[J].Fish & Shellfish Immunology,2014,40(1):24-31. |
[1] |
王倩楠, 冯妍, 贾凌晨, 刘有华, 皮乔木, 徐思琪, 李联泰, 蔡月凤, 安贤惠. 泥鳅鳃出血病病原菌及其拮抗菌的分离鉴定[J]. 水产科学, 2022, 41(5): 778-787. |
[2] |
邹升,龚亮,李东杰,曹丽娜,李艳平,何昊城,丁学知,易敢峰,夏立秋. 患病草鱼肠道病原菌的分离鉴定及毒力研究[J]. 水产科学, 2019, 38(2): 152-162. |
[3] |
王凯,于永翔,张正,王印庚,廖梅杰. 黄连素对海水病原菌的杀灭效果及药效稳定性[J]. 水产科学, 2019, 38(1): 67-72. |
[4] |
陈仲,蒋经伟,高杉,孙红娟,董颖,周遵春. 不同病原菌刺激后仿刺参幼参体腔细胞中免疫相关酶的应答变化[J]. 水产科学, 2018, 37(3): 295-300. |
[5] |
许本宏,林俊芳,叶志伟,郭丽琼,陆雅琴,林金德. 带鱼肠道中芽孢杆菌的分离鉴定及其发酵液抗菌性质研究[J]. 水产科学, 2018, 37(2): 193-200. |
[6] |
何涛,邹升,龚亮,赵峰,周朋吉,李艳平,曹丽娜,丁学知,夏立秋. 草鱼病原菌AvX005的分离鉴定及其拮抗菌筛选研究[J]. 水产科学, 2018, 37(1): 15-23. |
[7] |
吕爱军,胡秀彩,孙敬锋,石洪玥,陈成勋,李莉,孔祥会. 鱼类皮肤免疫应答及蛋白质组学[J]. 水产科学, 2016, 35(3): 302-307. |
[8] |
刘君,林俊芳,郭丽琼,叶志伟,方再光,郭心悦,李梓良. 水产源乳酸菌的多样性及抑菌活性研究[J]. 水产科学, 2015, (6): 351-357. |
[9] |
任利华,姜芳,张秀珍,孙国华,杨建敏,刘丽娟,姜向阳,孙灵毅. 环境诱因引起大面积死亡背景下底播增殖仿刺参生物体优势菌分析[J]. 水产科学, 2015, 34(12): 762-767. |
[10] |
李春涛,杨秀营,蒋自立. 大鳍鳠腹部一种感染性疾病病原菌确定及药敏研究[J]. 水产科学, 2014, (3): 171-174. |
[11] |
王艺,胡秀彩,吕爱军. IL-1β在鱼类皮肤免疫应答中的作用机制[J]. 水产科学, 2012, 31(8): 507-510. |
[12] |
成凯,谢丽玲,赵水灵,梁剑勇,刘向云. 黄芩对7种水产动物病原菌的体外抑菌活性研究[J]. 水产科学, 2011, 30(7): 415-417. |
[13] |
朱壮春,史相国,张淑杰,姜广健,邢朝斌,赵亚龙,李占军,吴鹏. 牙鲆腹水病病原研究[J]. 水产科学, 2006, 25(7): 325-329. |
[14] |
蔡俊鹏,刘江涛,王志. 引起南方九孔鲍苗大规模死亡的一株病原菌的分离鉴定及其致病性研究[J]. 水产科学, 2006, 25(7): 334-337. |
[15] |
蔡俊鹏,周晶,蔡创华,周毅频. 杂色鲍健康苗种与患病苗种异养细菌致病毒力因子的比较研究[J]. 水产科学, 2006, 25(5): 227-231. |
|
|
|
|