1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
2. Marine Science Research Institute of Shandong Province, Qingdao 266104, China;
3. School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China;
4. Quzhou Sturgeon Aquatic Food Technology Development Co., Ltd., Quzhou 324002, China
Abstract:The proximate nutrients, mineral content, amino acid and fatty composition, and histological characteristics of skins of six common sturgeon species were measured, including Siberian sturgeon Acipenser baerii, Russian sturgeon A. gueldenstaedti, kaluga sturgeon Huso dauricus, beluga H. huso, large hybrid sturgeon (H. dauricus♀× A. schrenckii ♂), and small hybrid sturgeon (A. baerii♀× A.schrenckii♂), to compare and evaluate the similarities and differences in their nutritional composition and histological characteristics. The results showed that the skins of the six species of sturgeon were rich in collagen (21.85%—30.47%), types of fatty acids and mineral elements, and the proportion of flavored amino acids was as high as 52.19%—53.04%. Specifically, the highest content of crude protein (37.21%) was found in beluga; kaluga sturgeon had the highest content of unsaturated fatty acid (27 287.63 μg/g)and proportion of flavored amino acids (53.04%); Russian sturgeon was rich in mineral elements, among which the calcium content (18 101.08 mg/kg) was the highest. Furthermore, the results of histological analysis indicated that the collagen fiber bundles of kaluga sturgeon, beluge, and large hybrid sturgeon were tight and thick, while that of Siberian sturgeon, Russian sturgeon and small hybrid sturgeon were small and loose. Overall, this study analyzed the nutrient composition of six different sturgeon skins commonly used in production to better understand their similarities and differences, thereby providing a theoretical background and desirable prospects for promoting the high-value utilization of sturgeon skins.
[1]ARIAEENEJAD S, HABIBI-REZAEI M, KAVOUSI K, et al. Denaturation and intermediates study of two sturgeon hemoglobins by n-dodecyl trimethylammonium bromide[J].International Journal of Biological Macromolecules,2013,53:107-113.
[2]BIRSTEIN V J, HANNER R, DESALLE R. Phylogeny of the Acipenseriformes:cytogenetic and molecular approaches[J].Environmental Biology of Fishes,1997,48(1/2/3/4):127-155.
[3]KATOPODIS C, CAI L, JOHNSON D. Sturgeon survival:the role of swimming performance and fish passage research[J].Fisheries Research,2019,212:162-171.
[4]BILLARD R, LECOINTRE G. Biology and conservation of sturgeon and paddlefish[J].Reviews in Fish Biology and Fisheries,2000,10(4):355-392.
[5]WEI Q W, KE F E, ZHANG J M, et al. Biology, fisheries, and conservation of sturgeons and paddlefish in China[J].Environmental Biology of Fishes,1997,48(1/2/3/4):241-255.
[6]周晓华.中国鲟鱼保护与产业发展管理[J].中国水产,2019(9):34-39.
[7]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2020中国渔业统计年鉴[M].北京:中国农业出版社,2020.
[8]中国水产流通与加工协会, 全国水生野生动物保护分会.中国鲟鱼产业发展报告[R].北京:中国水产流通与加工协会,全国水生野生动物保护分会,2019.
[9]ZHANG J J, DUAN R, TIAN Y Y, et al. Characterisation of acid-soluble collagen from skin of silver carp (Hypophthalmichthys molitrix)[J].Food Chemistry,2009,116(1):318-322.
[10]NIKOO M, BENJAKUL S, XU X M. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince[J].Food Chemistry,2015,181:295-303.
[11]WANG L, LIANG Q F, CHEN T T, et al. Characterization of collagen from the skin of Amur sturgeon (Acipenser schrenckii)[J].Food Hydrocolloids,2014,38:104-109.
[12]ATEF M, OJAGH S M, LATIFI A M, et al. Biochemical and structural characterization of sturgeon fish skin collagen (Huso huso)[J].Journal of Food Biochemistry,2020,44(8):e13256.
[13]LIANG C Y, JIA M Y, TIAN D N, et al. Edible sturgeon skin gelatine films:tensile strength and UV light-barrier as enhanced by blending with esculine[J].Journal of Functional Foods,2017,37:219-228.
[14]国家卫生和计划生育委员会.GB 5009.3—2016,食品中水分的测定[S].北京:中国标准出版社,2016.
[15]国家卫生和计划生育委员会.GB 5009.4—2016,食品中灰分的测定[S].北京:中国标准出版社,2016.
[16]国家卫生和计划生育委员会,国家食品药物监督管理总局.GB 5009.5—2016,食品中蛋白质的测定[S].北京:中国标准出版社,2016.
[17]国家卫生和计划生育委员会,国家食品药物监督管理总局.GB 5009.6—2016,食品中脂肪的测定[S].北京:中国标准出版社,2016.
[18]日本食品工业学会《食品分析法》编辑委员会.食品分析方法-上册[M].郑州粮食学院《食品分析方法》翻译组,译.成都:四川科学技术出版社,1986.
[19]国家卫生和计划生育委员会,国家食品药物监督管理总局.GB 5009.124—2016,食品中氨基酸的测定[S].北京:中国标准出版社,2016.
[20]国家卫生和计划生育委员会,国家食品药物监督管理总局.GB 5009.168—2016 食品中脂肪酸的测定[S].北京:中国标准出版,2016.
[21]国家卫生和计划生育委员会,国家食品药物监督管理总局.GB 5009.268—2016 食品中多元素的测定[S].北京:中国标准出版,2016.
[22]VINAY B J, SINDHU KANYA T C. Effect of detoxification on the functional and nutritional quality of proteins of karanja seed meal[J].Food Chemistry,2008,106(1):77-84.
[23]陈细华.鲟形目鱼类生物学与资源现状[M].北京:海洋出版社,2007.
[24]HA J H, KIM H N, MOON K B, et al. Recombinant human acidic fibroblast growth factor (aFGF) expressed in Nicotiana benthamiana potentially inhibits skin photoaging[J].Planta Medica,2017,83(10):862-869.
[25]李芳,王全杰,侯立杰.鲟鱼皮的组织学研究及其在皮革中的应用[J].中国皮革,2012,41(5):24-27.
[26]王珏,朱礼国,唐幕湘,等.改良Masson三色染色法在胶原纤维中的应用[J].郧阳医学院学报,2006,25(1):44.
[27]胡芬,李小定,熊善柏,等.5种淡水鱼肉的质构特性及与营养成分的相关性分析[J].食品科学,2011,32(11):69-73.
[28]陈小雷,崔凯,周蓓蓓,等.山泉流水与池塘养殖草鱼营养成分比较[J].水产科学,2020,39(1):63-71.
[29]曹静,张凤枰,宋军,等.养殖和野生长吻肌肉营养成分比较分析[J].食品科学,2015,36(2):126-131.
[30]陈晓婷,吴靖娜,许旻,等.四种河鲀鱼皮和鱼肉的营养成分分析与评价[J].现代食品科技,2020,36(1):69-77.
[31]叶小燕,曾少葵,余文国,等.罗非鱼皮营养成分分析及鱼皮明胶提取工艺的探讨[J].南方水产,2008,4(5):55-60.
[32]陈小娥,方旭波,钟秋琴.安康鱼皮中胶原蛋白的提取工艺研究[J].食品工业科技,2007,28(3):131-133.
[33]刘丛力,李娟,张双灵,等.虹鳟鱼皮营养成分及其胶提工艺探讨[J].食品研究与开发,2013,34(8):97-99.
[34]韩凤杰,赵征.酶法制取比目鱼皮胶原蛋白寡肽[J].食品研究与开发,2006,27(8):104-107.
[35]程小飞,洪波,苏东旭,等.刺鲃鱼皮和鱼鳞营养成分的分析与评价[J].现代食品科技,2019,35(5):259-267.
[36]程波,陈超,王印庚,等.七带石斑鱼肌肉营养成分分析与品质评价[J].渔业科学进展,2009,30(5):51-57.
[37]姜晓东,李红艳,王颖,等.大马哈鱼(Oncorhynchus keta)鱼皮的营养成分分析[J].渔业科学进展,2015,36(5):145-150.
[38]王彩理,李娟,张双灵,等.大菱鲆鱼皮的氨基酸分析及评价[J].氨基酸和生物资源,2013,35(1):65-67.
[39]毛艳贞,李诚,刘耀敏,等.斑点叉尾鱼鱼皮及其制品的营养品质比较[J].中国食物与营养,2012,18(11):66-69.
[40]罗鸣钟,关瑞章,李忠琴,等.五种养殖鳗鲡鱼皮的氨基酸组成分析及评价[J].营养学报,2013,35(4):403-405.
[41]KRIS-ETHERTON P M, HARRIS W S, APPEL L J, et al. Fish consumption, fish oil, Omega-3 fatty acids, and cardiovascular disease[J].Circulation,2002,106(21):2747-2757.
[42]CALDER P C. The role of marine Omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability[J].Molecular Nutrition & Food Research,2012,56(7):1073-1080.
[43]COLLETT E D, DAVIDSON L A, FAN Y Y, et al. N-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes[J].American Journal of Physiology-Cell Physiology,2001,280(5):C1066-C1075.
[44]SIMOPOULOS A P. The importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases[J].Experimental Biology and Medicine,2008,233(6):674-688.
[45]HARRIS W S. The Omega-6/Omega-3 ratio and cardiovascular disease risk:uses and abuses[J].Current Atherosclerosis Reports,2006,8(6):453-459.
[46]施晓玲,蒋林惠,程晓宏,等.鲟鱼软骨中微量元素含量分析及营养评价[J].水产养殖,2017,38(10):38-41.
[47]杨霞.狭鳕鱼皮明胶和罗非鱼皮明胶抗贫血活性的研究[D].青岛:中国海洋大学,2013.
[48]JOO S T, KIM G D, HWANG Y H, et al. Control of fresh meat quality through manipulation of muscle fiber characteristics[J].Meat Science,2013,95(4):828-836.