Screening, Identification and Biological Characteristics of Two Antagonistic Bacteria Against Aquaculture Aeromonas Pathogens
LONG Meng1,2,3, FAN Huimin1, JIANG Yao3, XIA Hongli1, CHENG Jun1, YU Dapeng1, XIA Liqun1,4, LU Yishan1,4
1. Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; 2. Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen 518120, China; 3. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 4. Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
Abstract:Aeromonas is an important pathogen of aquaculture, and there are still no effective treatments to prevent the infections caused by various Aeromonas. Mangrove sediments possess abundant Bacillus, becoming important reservoirs of bioactive microorganisms. In this study, we isolated two strains from mangrove sediments in Dongchong, Shenzhen, which displayed strong antagonistic activity against six pathogenic Aeromonas species. Based on the analysis of morphological properties, biochemical characteristics and molecular genetics, the two strains named AH10 and AQ1 were identified as B. amyloliquefaciens and B. velezensis respectively. The biological characteristics of the two strains showed similar optimum conditions of 32 ℃, pH of 5—7 and salinity of 0—20 for growth. The results of antibiotics sensitivity test showed that the two strains were highly sensitive to most of the antibiotics, except tetracycline and low dose streptomycin. Besides the six pathogenic Aeromonas, the antagonistic results revealed that the two strains also had antagonistic activities against Edwardsiella, and Plesiomonas shigelloides, in which B. amyloliquefaciens AH10 and B. velezensis AQ1 showed the strongest effect against P. shigelloides and A. salmonicida respectively. The two strains also showed no pathogenic capacity to zebrafish Danio rerio and silver carp Hypophthalmichthys molitrix. In conclusion, new antagonistic resources for the biological control of pathogenic Aeromonas in aquaculture is reported, providing good application prospects and research potential in the future.
[1]CIPRIANO R C, BULLOCK G L, PYLE S W, et al. Aeromonas hydrophila and motile aeromonad septicemias of fish[J].US Fish & Wildlife Publications, Fish Disease Leaflet,1984,134(68):1-23. [2]JANDA J M, ABBOTT S L. The genus Aeromonas:taxonomy, pathogenicity, and infection[J].Clinical Microbiology Reviews,2010,23(1):35-73. [3]陈怀青,陆承平.家养鲤科鱼暴发性传染病的病原研究[J].南京农业大学学报,1991,14(4):87-91. [4]沈锦玉,张志育,钱冬,等.中华鳖对温和气单胞菌体液免疫应答规律的研究[J].水生生物学报,2003,27(1):27-30. [5]张晓君,陈翠珍,房海,等.鲢鱼白皮病致病菌特性的研究[J].河北农业技术师范学院学报,1998,12(3):40-44. [6]陈怀青,陆承平.嗜水气单胞菌:黄鳝出血性败血症的病原[J].中国人兽共患病杂志,1991,7(4):21-23. [7]钟妮娜,汪开毓.鲤鱼细菌性败血症及穿孔病病原菌与嗜水气单胞菌标准株特性的比较研究[J].四川农业大学学报,2001,19(1):94-96. [8]张运强,李庆乐.嗜水气单胞菌的致病性及其防治方法[J].广西农业科学,2007,38(5):565-568. [9]孟思妤,孟长明,陈昌福.水产动物的气单胞菌病及其防治措施(上)[J].渔业致富指南,2010(10):52-53. [10]孟思妤,孟长明,陈昌福.水产动物的气单胞菌病及其防治措施(下)[J].渔业致富指南,2010(11):57-58. [11]杨乔乔,安贤惠,韩迎亚,等.大鳞副泥鳅腐皮病病原菌及其拮抗菌的分离筛选[J].水产科学,2019,38(5):666-675. [12]BALCZAR J L, ROJAS-LUNA T, CUNNINGHAM D P. Effect of the addition of four potential probiotic strains on the survival of Pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus[J].Journal of Invertebrate Pathology,2007,96(2):147-150. [13]LEYVA-MADRIGAL K Y, LUNA-GONZLEZ A, ESCOBEDO-BONILLA C M, et al. Screening for potential probiotic bacteria to reduce prevalence of WSSV and IHHNV in whiteleg shrimp (Litopenaeus vannamei) under experimental conditions[J].Aquaculture,2011,322/323:16-22. [14]孙梅,张维娜,高亮,等.解淀粉芽孢杆菌JSSW-LA的分离鉴定及对病原菌拮抗特性[J].江苏农业科学,2016,44(4):275-279. [15]赵雅慧,张舒琳,吴家法,等.山口红树林根际土壤可培养细菌多样性及其活性筛选[J].海洋学报,2018,40(8):138-151. [16]马克.米埔红树林土壤可培养微生物的多样性及其次级代谢产物的研究[D].深圳:深圳大学,2018:15. [17]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:349-398. [18]BERGEY D H. Bergey's manual of determinative bacteriology[M]. Baltimore: Lippincott Williams & Wilkins,1994:213-221. [19]张静,陈红莲,鲍俊杰,等.水产养殖中嗜水气单胞菌拮抗菌的研究进展[J].江苏农业科学,2020,48(17):21-33. [20]刘亚楠,习丙文,梁利国,等.1株嗜水气单胞菌的拮抗菌鉴定及其特性研究[J].水生态学杂志,2014,35(3):82-87. [21]蒋云霞,郑天凌,田蕴.红树林土壤微生物的研究:过去、现在、未来[J].微生物学报,2006,46(5):848-851. [22]龙寒,向伟,庄铁城,等.红树林区微生物资源[J].生态学杂志,2005,24(6):696-702. [23]陈华,洪葵,庄令,等.海南红树林的微生物生态分布及细胞毒活性评价[J].热带作物学报,2006,27(1):59-63. [24]杨晓洪,顾觉奋.红树林土壤微生物与其代谢产物研究进展[J].国外医药(抗生素分册),2011,32(3):97-100. [25]王世平,柯研,袁瑞瑛,等.红树林共附生微生物及其代谢产物研究进展[J].中华中医药杂志,2010,25(2):269-271. [26]金善钊.菊芋贮藏致病菌的拮抗菌株筛选及一株海洋假单胞菌拮抗特性的研究[D].南京:南京农业大学,2013:51. [27]胡芮.红树林生境纤维素酶活性菌的筛选与功能基因的重组表达[D].吉林:东北电力大学,2020:53-54. [28]孙超,曾湘,李光玉,等.红树林沉积物中天然多聚有机物厌氧降解菌多样性与细菌新类群分离[J].微生物学报,2021,61(4):987-1001. [29]RUIZ-GARCA C, BJAR V, MARTNEZ-CHECA F, et al. Bacillusvelezensis sp.nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt 1):191-195. [30]蔡高磊,张凡,欧阳友香,等.贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J].北方园艺,2018(12):162-167. [31]陶永梅,潘洪吉,黄健,等.新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用[J].中国植保导刊,2019,39(9):26-33. [32]PRIEST F G, GOODFELLOW M, SHUTE L A, et al. Bacillus amyloliquefaciens sp. nov., nom. rev[J].International Journal of Systematic Bacteriology,1987,37(1):69-71. [33]FAN B, BLOM J, KLENK H P, et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B.subtilis species complex[J].Frontiers in Microbiology,2017,8:22. [34]KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J].International Journal of Systematic and Evolutionary Microbiology,2014,64(Pt 2):346-351. [35]GAO Z F, ZHANG B J, LIU H P, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J].Biological Control,2017,105:27-39. [36]QIN Y X, HAN Y Z, SHANG Q M, et al. Complete genome sequence of Bacillus amyloliquefaciens L-H15, a plant growth promoting rhizobacteria isolated from cucumber seedling substrate[J].Journal of Biotechnology,2015,200:59-60. [37]LIU G Q, KONG Y Y, FAN Y J, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J].Journal of Biotechnology,2017,249:20-24. [38]陈成,崔堂兵,于平儒.一株抗真菌的解淀粉芽孢杆菌的鉴定及其抗菌性研究[J].现代食品科技,2011,27(1):36-39. [39]YI Y L, ZHANG Z H, ZHAO F, et al. Probiotic potential of Bacillus velezensis JW:antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus[J].Fish & Shellfish Immunology,2018,78:322-330. [40]王金燕,李彬,王印庚,等.刺参养殖池塘一株贝莱斯芽孢杆菌的分离及其生理特性[J].中国水产科学,2018,25(3):567-575. [41]高艳侠,张德锋,可小丽,等.罗非鱼源无乳链球菌肠道拮抗芽孢杆菌的筛选及其生物学特性[J].微生物学报,2019,59(5):926-938. [42]ZHANG D F, GAO Y X, KE X L, et al. Bacillus velezensis LF01:in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus)[J].Applied Microbiology and Biotechnology,2019,103(21/22):9023-9035. [43]陈楠楠,秦平伟,尹珺伊,等.解淀粉芽孢杆菌抗菌机制研究进展[J].中国微生态学杂志,2018,30(12):1464-1469. [44]ZHU Z X, JIANG X H, DENG S Z, et al. Isolation, identification and in vitro antimicrobial susceptibility of pathogenic Aeromonas veronii from soft-shelled turtles[J].Agricultural Science & Technology,2016,17(4):804-809. [45]傅超英,王建平,孙琛,等.大黄鱼主要致病菌拮抗菌株的分离鉴定、抑菌谱及安全性分析[J].生物技术通报,2019,35(1):67-75.