Dynamic Changes in Physical-Chemical Factors and Microbial Diversity in Ecological Culture Ponds of Largemouth Bass Micropterus salmoides
ZHANG Guangchen1, WANG Yang1,2, SUN Xueliang1,2, LUO Yunlong1, WANG Jingru1, LIU Fanxiang1, JI Yanbin1,2
1. College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China; 2. Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Tianjin 300392, China
Abstract:To explore the changes of microorganisms and water quality physicochemical indices in ecoculture ponds of largemouth bass Micropterus salmoides in July—September and their relationship, the microbial community structure was determine by high throughput sequencing technology and the physico-chemical indices were monitored in surface water in the cultured areas and microecosystem of a largemouth bass ecological culture pond in Tianjin from July to September. After the aquaculture tail water was treated by aquatic vegetables, the surface water entered the micro-ecological filtration area with brush as the matrix, and then the bottom water entered the aquatic vegetable treatment area and finally entered the 300 m2 culture pond with4000 individuals of largemouth bass for recycling. The results showed that there was always higher α diversity of microbial diversity in the sediment than that in water and brush, with the dominant microorganisms in Proteobacteria in all samples. Cyanobacteria in the water was found to be gradually increased to the dominant species in September, with change in the dominant bacteria in the brush samples with the time of cultivation and with the maximal proportion of Firmicutes in September. The maximal content of ammonia nitrogen was observed in the water in the aquaculture area and the microecological area in August, with the maximal contents of total nitrogen, orthophosphates, permanganate index, and suspended solids (SS), and pH and total alkalinity in September in the two regions. The correlation analysis showed that there was a significant negative correlation between the nitrate nitrogen content in the water and the Rhizobiales Incertae Sedis abundance in the brush. There was significant negative correlation between the content of nitrite nitrogen and the abundance of Rhodobacteraceae in sediment and Norank_o_ _norank_c_ _Nitrospira in brush (P<0.05). The findings provide a reference for the regulation of water quality and microorganisms in ecological ponds and the subsequent related studies, and the screening of functional bacteria for remediation of water quality in largemouth bass from July to September
张光晨, 王洋, 孙学亮, 罗云龙, 王竞儒, 刘凡湘, 季延滨. 大口黑鲈生态塘微生态及水理化指标变化分析[J]. 水产科学, 2023, 42(4): 622-631.
ZHANG Guangchen, WANG Yang, SUN Xueliang, LUO Yunlong, WANG Jingru, LIU Fanxiang, JI Yanbin. Dynamic Changes in Physical-Chemical Factors and Microbial Diversity in Ecological Culture Ponds of Largemouth Bass Micropterus salmoides. Fisheries Science, 2023, 42(4): 622-631.
[1]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2020中国渔业统计年鉴[M].北京:中国农业出版社,2020:17. [2]LIU Q F, LAI Z N, GAO Y, et al. Connection between the gut Microbiota of largemouth bass (Micropterus salmoides) and Microbiota of the pond culture environment[J].Microorganisms,2021,9(8):1770. [3]PARK M, SHIN S K, DO Y H, et al. Application of open water integrated multi-trophic aquaculture to intensive monoculture:a review of the current status and challenges in Korea[J].Aquaculture,2018,497:174-183. [4]NORA'AINI A, WAHAB MOHAMMAD A, JUSOH A, et al. Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane[J].Desalination,2005,185(1/2/3):317-326. [5]DIKEN GÜR S, BAKHSHPOUR M, DENIZLI A. Applications of microbes in bioremediation of water pollutants[M]//Recent Advances in Microbial Degradation.Singapore:Springer Singapore,2021:465-483. [6]YILDIZ H Y, ROBAINA L, PIRHONEN J, et al. Fish welfare in aquaponic systems:its relation to water quality with an emphasis on feed and faeces: a review[J].Water,2017,9(1):13. [7]BENTZON-TILIA M, SONNENSCHEIN E C, GRAM L. Monitoring and managing microbes in aquaculture - Towards a sustainable industry[J].Microbial Biotechnology,2016,9(5):576-584. [8]WONG S, RAWLS J F. Intestinal microbiota composition in fishes is influenced by host ecology and environment[J].Molecular Ecology,2012,21(13):3100-3102. [9]BUTT R L, VOLKOFF H. Gut Microbiota and energy homeostasis in fish[J].Frontiers in Endocrinology,2019,10:9. [10]李晓,李冰,董玉峰,等.精养团头鲂池塘沉积物微生物群落的结构特征及组成多样性分析[J].水产学报,2014,38(2):218-227. [11]王一亭,李波,王厚红,等.基于Miseq测序技术分析黄颡鱼不同养殖模式下池塘微生物群落结构多样性[J].水生生物学报,2020,44(4):781-789. [12]刘聪.基于高通量测序技术分析虾贝混养池塘环境中微生物多样性[D].上海:上海海洋大学,2019:1-65. [13]吴欢欢,王伟继,吕丁,等.应用高通量测序技术分析大菱鲆幼鱼肠道及其养殖环境的微生物群落结构[J].渔业科学进展,2019,40(4):84-94. [14]ZENG S Z, KHORUAMKID S, KONGPAKDEE W, et al. Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in Aquamimicry system[J].AMB Express,2020,10(1):180. [15]ZHANG K K, ZHENG X F, HE Z L, et al. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments[J].Microbial Biotechnology,2020,13(5):1597-1610. [16]ZHENG X F, TANG J Y, ZHANG C F, et al. Bacterial composition, abundance and diversity in fish polyculture and mussel-fish integrated cultured ponds in China[J].Aquaculture Research,2017,48(7):3950-3961. [17]刘梅,练青平,倪蒙,等.池塘内循环流水养殖模式对大口黑鲈生长性能、抗氧化酶、消化酶及消化道组织结构和菌群的影响[J].水产学报,2021,45(12):2011-2028. [18]王朋,徐钢春,徐跑.大口黑鲈池塘工程化循环水养殖系统的溶解氧时空变化及菌群响应特征[J].水生生物学报,2019,43(6):1290-1299. [19]黄鹤忠,周建春,顾荣明.加州鲈池塘生态养殖模式及水质生物调控技术研究[J].水利渔业,2006,27(6):61-63. [20]王海华,傅义龙,徐先栋,等.鄱阳湖区加州鲈网箱生态养殖模式的效果评估[J].中国生态农业学报,2013,21(8):1009-1015. [21]刘梅,原居林,倪蒙,等.大口黑鲈(Micropterus salmoides)不同养殖模式氮磷收支及养殖效果研究[J].海洋与湖沼,2021,52(3):718-728. [22]中华人民共和国环境保护部.HJ 636—2012,水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法[S].北京:中国环境科学出版社,2012:1-5. [23]国家环境保护局. GB 11892—1989,水质 高锰酸盐指数的测定[S].北京:中国标准出版社,1989:184-187. [24]国家环境保护局.GB 7479—1987,水质 铵的测定 纳氏试剂比色法[S].北京:中国标准出版社,1987:63-67. [25]国家环境保护总局.GB 7493—1987,水质 亚硝酸盐氮的测定 分光光度法[S].北京:中国标准出版社,1987. [26]国家环境保护局.GB 7480—1987,水质 硝酸盐氮的测定 酚二磺酸分光光度法[S].北京:中国标准出版社,1987:73-77. [27]国家环境保护总局.GB 11893—1989,水质 总磷的测定 钼酸铵分光光度法[S].北京:中国标准出版社,1989:188-191. [28]国家环境保护局.GB 6920—1986,水质pH值的测定 玻璃电极法[S].北京:中国标准出版社,1987:1-5. [29]国家环境保护局.GB 11901—89,水质 悬浮物的测定 重量法[S].北京:中国标准出版社,1990:1-2. [30]国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 15451—2006,工业循环冷却水 总碱及酚酞碱度的测定[S].北京:中国标准出版社,2007:1-3. [31]国家环境保护局.GB 7477—1987,水质 钙和镁总量的测定 EDTA滴定法[S].北京:中国标准出版社,1987:55-58. [32]王鑫毅,谢骁,金珊,等.基于高通量测序的缢蛏及其养殖池塘菌群结构的季节变化[J].应用生态学报,2019,30(12):4267-4276. [33]钟立强,李冰,王明华,等.斑点叉尾鮰养殖池塘底泥微生物群落结构特征及其影响因素[J].中国水产科学,2020,27(8):893-905. [34]闫法军,田相利,董双林,等.刺参养殖池塘水体微生物群落功能多样性的季节变化[J].应用生态学报,2014,25(5):1499-1505. [35]张莹,石萍,马炯.微小杆菌Exiguobacterium spp. 及其环境应用研究进展[J].应用与环境生物学报,2013,19(5):898-904. [36]程莹寅,吴山功,郑英珍,等.主养草鱼池塘底泥微生物群落多样性研究[J].淡水渔业,2011,41(6):43-49. [37]张晶,林先贵,刘魏魏,等.土壤微生物群落对多环芳烃污染土壤生物修复过程的响应[J].环境科学,2012,33(8):2825-2831. [38]王猛,李如刚,肖毅宏,等.城市生活污水处理厂活性污泥中细菌群落结构组成研究[J].化学与生物工程,2013,30(8):28-31. [39]邹万生,罗玉双,刘良国,等.1株微小杆菌对4种蓝藻的生长影响[J].生态与农村环境学报,2013,29(5):612-617. [40]刘建康.高级水生生物学[M].北京:科学出版社,1999:23. [41]RUIZ N, ESCOBAR Y. A review of physical-chemical parameters as water quality and contamination indica-tors[J].Ingeniería e Investigación,2007,27(3):172-181. [42]OLIVEIRA M, MACHADO A V. The role of phosphorus on eutrophication:a historical review and future perspectives[J].Environmental Technology Reviews,2013,2(1):117-127. [43]XIA X H, ZHANG S B, LI S L, et al. The cycle of nitrogen in river systems:sources, transformation, and flux[J].Environmental Science:Processes & Impacts,2018,20(6):863-891. [44]KROUPOVA H, MACHOVA J, SVOBODOVA Z. Nitrite influence on fish:a review[J].Veterinární Medicína,2005,50(11):461-471. [45]罗金飞,廖永岩,李书迪,等.温度对拟穴青蟹循环水养殖系统微生物群落结构的影响[J].中国水产科学,2020,27(4):393-405. [46]ZHANG H, SUN Z L, LIU B, et al. Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors[J].Aquaculture,2016,455:97-108. [47]MEHRANI M J, SOBOTKA D, KOWAL P, et al. The occurrence and role of Nitrospira in nitrogen removal systems[J].Bioresource Technology,2020,303:122936. [48]XU T T, YU M, LIU J L, et al. Role of RpoN from Labrenzia aggregata LZB033 (Rhodobacteraceae) in formation of flagella and biofilms, motility, and environmental adaptation[J].Applied and Environmental Microbiology,2019,85(7):e02844-18. [49]JIA L P, JIANG B H, HUANG F, et al. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system[J].Bioresource Technology,2019,294:122140.