Transcriptome on Response of Four Species of Green Tide Algae to Heat Stress
ZHAO Hui1, ZHOU Lingjie1, CAI Chun′er1,2, HE Peimin1,2
1. College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:The Yellow Sea green tide has seriously damaged the marine ecology and caused huge economic loss and serious social influence. Four species of green tide algae Ulva prolifera, U. linza, U. flexuosa, and U. compressa were collected from the coast of Qingdao in July 2008, and the progeny remaining after pure line culture under suitable conditions were divided into two groups: the control group was treated at the optimum temperature and the treatment group was treated at 30 °C for 24 h. The algae were taken out, treated with liquid nitrogen and stored at -80 °C until RNA extraction, RNA quality control detection and transcriptome by high-throughput sequencing. It was found that the descending order of the number of differential genes in four Ulva species was expressed as U. compressa>U. flexuosa>U. prolifera>U. linza. These differential genes were enriched in four metabolic pathways of transport and catabolism, lipid metabolism, amino acid metabolism and energy metabolism, while the differential genes in U. prolifera were enriched in pathways specific to oxidative phosphorylation, glyoxylate and dicarboxylic acid metabolism and ABC transporter, which may be related to the special response of U, prolifera to high temperature stress. The four types of Ulva all had complete heat shock protein synthesis and antioxidant systems, and the down-regulation of heat shock protein-related gene expression in Ulva compressa. Different Ulva resisted high temperature through the expression of different antioxidant enzymes, in which the role of superoxide dismutase was the most important. The finding provides theoretical basis for succession of four Ulva species during the outbreak of green tide.
赵卉, 周玲洁, 蔡春尔, 何培民. 4种绿潮藻响应高温胁迫的转录组学研究[J]. 水产科学, 2024, 43(2): 199-214.
ZHAO Hui, ZHOU Lingjie, CAI Chun′er, HE Peimin. Transcriptome on Response of Four Species of Green Tide Algae to Heat Stress. Fisheries Science, 2024, 43(2): 199-214.
[1] VALIELA I, MCCLELLAND J, HAUXWELL J, et al. Macroalgal blooms in shallow estuaries:controls and ecophysiological and ecosystem consequences[J].Limnology and Oceanography,1997,42(5 part 2):1105-1118. [2] YE N H, ZHANG X W, MAO Y Z, et al. “Green tides” are overwhelming the coastline of our blue planet:taking the world′s largest example[J].Ecological Research,2011,26(3):477-485. [3] SMETACEK V, ZINGONE A. Green and golden seaweed tides on the rise[J].Nature,2013,504(7478):84-88. [4] ZHOU M J, LIU D Y, ANDERSON D M, et al. Introduction to the Special Issue on green tides in the Yellow Sea[J].Estuarine, Coastal and Shelf Science,2015,163:3-8. [5] 于仁成,刘东艳.我国近海藻华灾害现状、演变趋势与应对策略[J].中国科学院院刊,2016,31(10):1167-1174. [6] ZHANG Y Y, HE P M, LI H M, et al. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China[J].National Science Review,2019,6(4):825-838. [7] LIU D Y, KEESING J K, HE P M, et al. The world′s largest macroalgal bloom in the Yellow Sea, China:formation and implications[J].Estuarine, Coastal and Shelf Science,2013,129:2-10. [8] MERCERON M, ANTOINE V, AUBY I, et al. In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks[J].The Science of the Total Environment,2007,384(1/2/3):293-305. [9] NELSON T A, HABERLIN K, NELSON A V, et al. Ecological and physiological controls of species composition in green macroalgal blooms[J].Ecology,2008,89(5):1287-1298. [10] VAN ALSTYNE K L, NELSON T A, RIDGWAY R L. Environmental chemistry and chemical ecology of “green tide” seaweed blooms[J].Integrative and Comparative Biology,2015,55(3):518-532. [11] HAN W, CHEN L P, ZHANG J H, et al. Seasonal variation of dominant free-floating and attached Ulva species in Rudong coastal area, China[J].Harmful Algae,2013,28:46-54. [12] TAYLOR R, FLETCHER R L, RAVEN J A. Preliminary studies on the growth of selected “green tide” algae in laboratory culture:effects of irradiance, temperature, salinity and nutrients on growth rate[J].Botanica Marina,2001,44(4):327-336. [13] SONG W, PENG K Q, XIAO J, et al. Effects of temperature on the germination of green algae micro-propagules in coastal waters of the Subei Shoal, China[J].Estuarine, Coastal and Shelf Science,2015,163:63-68. [14] 徐军田,王学文,钟志海,等.两种浒苔无机碳利用对温度响应的机制[J].生态学报,2013,33(24):7892-7897. [15] 高兵兵,郑春芳,徐军田,等.缘管浒苔和浒苔对海水盐度胁迫的生理响应[J].应用生态学报,2012,23(7):1913-1920. [16] ZHANG X W, XU D, MAO Y Z, et al. Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom[J].Limnology and Oceanography,2011,56(1):233-242. [17] CUI J J, ZHANG J H, HUO Y Z, et al. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity[J].Marine Pollution Bulletin,2015,101(2):660-666. [18] 孟晓智,苏贵森,卓品利,等.温度和光照强度对浒苔生长和光合生理特性的影响[J].生物学杂志,2018,35(4):49-52. [19] LI Y H, ZHENG M S, LIN J J, et al. Darkness and low nighttime temperature modulate the growth and photosynthetic performance of Ulva prolifera under lower salinity[J].Marine Pollution Bulletin,2019,146:85-91. [20] LI G, QIN Z, ZHANG J J, et al. Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes[J].Algal Research,2020,46:101797. [21] GORDILLO F J L, CARMONA R, VIÑEGLA B, et al. Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard)[J].Polar Biology,2016,39(11):1993-2007. [22] FAN M H, SUN X, LIAO Z, et al. Comparative proteomic analysis of Ulva prolifera response to high temperature stress[J].Proteome Science,2018,16:17. [23] HE Y L, HU C Y, WANG Y H, et al. The metabolic survival strategy of marine macroalga Ulva prolifera under temperature stress[J].Journal of Applied Phycology,2018,30(6):3611-3621. [24] 彭捷,崔翠菊,张立楠,等.高温胁迫对高温筛选后海带配子体存活率和生理的影响[J].水产科学,2016,35(1):32-36. [25] WIERMER M, FEYS B J, PARKER J E. Plant immunity:the EDS1 regulatory node[J].Current Opinion in Plant Biology,2005,8(4):383-389. [26] HE Y, MA Y F, DU Y, et al. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis[J].BMC Genomics,2018,19(1):916. [27] YANG J J, YU D C, MA Y F, et al. Antioxidative defense response of Ulva prolifera under high or low-temperature stimulus[J].Algal Research,2019,44:101703. [28] NEWSTED J L. Effect of light, temperature, and pH on the accumulation of phenol by Selenastrum capricornutum, a green alga[J].Ecotoxicology and Environmental Safety,2004,59(2):237-243. [29] WANG Y, LIU F, LIU X F, et al. Comparative transcriptome analysis of four co-occurring Ulva species for understanding the dominance of Ulva prolifera in the Yellow Sea green tides[J].Journal of Applied Phycology,2019,31(5):3303-3316. [30] BEAULIEU L. Insights into the regulation of algal proteins and bioactive peptides using proteomic and transcriptomic approaches[J].Molecules (Basel, Switzerland),2019,24(9):1708. [31] 汤文仲,李信书,黄海燕,等.不同光强和温度对长石莼(缘管浒苔)光合作用和叶绿素荧光参数的影响[J].水产学报,2009,33(5):762-769. [32] 何进,石雅君,王玉珏,等.不同温度与营养盐条件对浒苔(Ulva prolifera)和肠浒苔(Ulva intestinalis)的生长影响[J].海洋通报,2013,32(5):573-579. [33] 孙修涛,王翔宇,汪文俊,等.绿潮中浒苔的抗逆能力和药物灭杀效果初探[J].海洋水产研究,2008,29(5):130-136. [34] 王宗灵,傅明珠,肖洁,等.黄海浒苔绿潮研究进展[J].海洋学报,2018,40(2):1-13. [35] 刘雪娇.核桃热激转录因子的鉴定及在非生物胁迫下的表达分析[D].杨凌:西北农林科技大学,2021. [36] 周玲洁. 黄海绿潮藻基因组及比较转录组分析[D]. 上海:上海海洋大学,2016. [37] KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment[J].Nucleic Acids Research,2008,36(Database issue):D480-D484. [38] MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat?[J].Trends in Biochemical Sciences,2012,37(3):118-125. [39] HUANG L B, PENG L N, YAN X H. Multi-omics responses of red algae Pyropia haitanensis to intertidal desiccation during low tides[J].Algal Research,2021,58:102376. [40] 冯振月, 刘德福, 崔玉东. 大肠杆菌ABC转运体研究进展[J]. 中国人兽共患病学报, 2018, 34(10): 944-949. [41] 王德龙,叶武威,王俊娟,等.干旱胁迫下棉花SSH文库构建及其抗旱相关基因分析[J].作物学报,2010,36(12):2035-2044. [42] WANG W X, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J].Trends in Plant Science,2004,9(5):244-252. [43] DE JONG W W, CASPERS G J, LEUNISSEN J A M. Genealogy of the α-crystallin—small heat-shock protein superfamily[J].International Journal of Biological Macromolecules,1998,22(3/4):151-162. [44] 李广隆,刘思言,鲁中爽,等.植物热激蛋白响应非生物胁迫研究进展[J].广东农业科学,2019,46(3):24-30. [45] 李雅博,李婷,韩莹琰,等.叶用莴苣热激蛋白基因LsHsp70-2711的克隆及高温胁迫下的功能分析[J].中国农业科学,2017,50(8):1486-1494. [46] 蒋晶晶,张建华,雷建军.黄瓜耐热的生理、遗传及其分子机制研究进展[J].广东农业科学,2014,41(13):29-34. [47] POCKLEY A G. Heat shock proteins in health and disease:therapeutic targets or therapeutic agents?[J].Expert Reviews in Molecular Medicine,2001,3(23):1-21. [48] MEIRI D, BREIMAN A. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs[J].The Plant Journal:for Cell and Molecular Biology,2009,59(3):387-399. [49] MEIRI D, TAZAT K, COHEN-PEER R, et al. Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance[J].Plant Molecular Biology,2010,72(1):191-203. [50] AVIEZER-HAGAI K, SKOVORODNIKOVA J, GALI-GNIANA M, et al. Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90[J].Plant Molecular Biology,2007,63(2):237-255. [51] 齐妍,徐兆师,李盼松,等.植物热激蛋白70的分子作用机理及其利用研究进展[J].植物遗传资源学报,2013,14(3):507-511. [52] 裴丽丽,徐兆师,尹丽娟,等.植物热激蛋白90的分子作用机理及其利用研究进展[J].植物遗传资源学报,2013,14(1):109-114. [53] VAYDA M E, YUAN M L. The heat shock response of an Antarctic alga is evident at 5 ℃[J].Plant Molecular Biology,1994,24(1):229-233. [54] ELYSE IRELAND H, HARDING S J, BONWICK G A, et al. Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemnaminor[J].Biomarkers,2004,9(2):139-155. [55] 周向红,李信书,王萍,等.高温胁迫下条斑紫菜叶状体HSP70基因的表达谱分析[J].水产科学,2011,30(4):233-237. [56] 付万冬.四种海藻热休克蛋白70(HSP70)基因的克隆与表达分析[D].青岛:中国科学院研究生院(海洋研究所),2009. [57] DAT J, VANDENABEELE S, VRANOVÁ E, et al. Dual action of the active oxygen species during plant stress responses[J].Cellular and Molecular Life Sciences,2000,57(5):779-795. [58] RODRIGUEZ MILLA M A, MAURER A, ROD-RIGUEZ HUETE A, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J].The Plant Journal:for Cell and Molecular Biology,2003,36(5):602-615. [59] GRENE R. Oxidative stress and acclimation mechanisms in plants[J].The Arabidopsis Book,2002,1:e0036. [60] NOVO E, PAROLA M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis[J].Fibrogenesis & Tissue Repair,2008,1(1):5. [61] 张宇婷,高建民,张琼琳,等.植物超氧化物歧化酶的研究进展[J].畜牧与饲料科学,2016,37(9):28-31. [62] 夏民旋,王维,袁瑞,等.超氧化物歧化酶与植物抗逆性[J].分子植物育种,2015,13(11):2633-2646. [63] ROXAS V P, LODHI S A, GARRETT D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant and Cell Physiology,2000,41(11):1229-1234. [64] SCANDALIOS J G. The rise of ROS[J].Trends in Biochemical Sciences,2002,27(9):483-486. [65] 刘云芬,王薇薇,祖艳侠,等.过氧化氢酶在植物抗逆中的研究进展[J].大麦与谷类科学,2019,36(1):5-8. [66] BRÉHÉLIN C, MEYER E H, DE SOURIS J P, et al. Resemblance and dissemblance of Arabidopsis type II peroxiredoxins:similar sequences for divergent gene expression, protein localization, and activity[J].Plant Physiology,2003,132(4):2045-2057. [67] 唐晓雯,范美华,王超峰,等.外源CaCl2调控浒苔(Ulva prolifera)高温逆境的比较转录组研究[J].海洋与湖沼,2021,52(3):766-776. [68] 刘丽杰,林立东.高温对褐藻羊栖菜逆境生理的影响[J].热带海洋学报,2021,40(2):74-82. [69] LIU F L, WANG W J, SUN X T, et al. Conserved and novel heat stress-responsive microRNAs were identified by deep sequencing in Saccharina japonica (Laminariales, Phaeophyta)[J].Plant, Cell & Environment,2015,38(7):1357-1367. [70] LIU F L, WANG W J, SUN X T, et al. RNA-Seq revealed complex response to heat stress on transcriptomic level in Saccharina japonica (Laminariales, Phaeophyta)[J].Journal of Applied Phycology,2014,26(3):1585-1596. [71] 魏婧,徐畅,李可欣,等.超氧化物歧化酶的研究进展与植物抗逆性[J].植物生理学报,2020,56(12):2571-2584. [72] 牟兆琳.Fe-SOD酶结构特征与耐热性的关系研究[D].无锡:江南大学,2014.