Comparative Analysis of Photovoltaic Fishery Breeding Ponds Based on Ecopath Model
GUO Zeyu1,2, LIU Xingguo2, CHEN Zhe1,2, YUAN Zehui1,2, LU Shimin2
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; 2. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
Abstract:In order to quantitatively analyze the energy flow characteristics in the pond systems of fishery and photovoltaic aquaculture, energy flow characteristics were measured in the pond systems of fishing photovoltaic greenhouse and photovoltaic fishery pond in Chongming District, Shanghai (N 121°49', E 31°33') from June 2023 to January 2024. Based on the measured data, the energy flow characteristics were analyzed in the two photovoltaic fishery ponds using Ecopath with Ecosim 6.5 software. The results showed that the main energy flow ways was found to be the grazing food chain in the photovoltaic fishery pond system, with the maximum effective trophic level (ETL) of 2.448, and to be the saprophytic food chain in the fishing photovoltaic greenhouse system, with the maximum ETL of 2.446. There was the maximal ecotrophic efficiency (EE) of 0.95 for phytoplankton in the photovoltaic fishery pond, and the maximal EE of 0.93 for Pacific white shrimp Litopenaeus vannamei in the fishing photovoltaic greenhouse, with food conversion ratio of 1.32 and 1.03, respectively. The zooplankton had EE values of less than 0.5 in both fishery photovoltaic pond and the fishing photovoltaic greenhouse, indicating that zooplankton cannot be effectively utilized by the systems, with low EE. The ecological niche overlap analysis revealed that the predator overlap index in the two ponds was similar, but the relatively high prey overlap index in the fishery photovoltaic pond, indicating that greater predation pressure from the predator in the fishery photovoltaic pond. Wholly, fishery photovoltaic pond was superior to the fishing photovoltaic greenhouse in terms of system maturity, with high development potential in both systems. The diversity of the system and the stability of the ecosystem can be improved by change in the breeding variety or addition of functional groups.
[1] 崔正国,曲克明,唐启升.渔业环境面临形势与可持续发展战略研究[J].中国工程科学,2018,20(5):63-68. [2] 肖述文,刘兴国,陆诗敏,等.草鱼单养和混养池塘的水质与生物组成特征[J].水生态学杂志,2023,44(6):79-87. [3] 吴立峰,牛超,张浩,等.渔光一体池塘光伏区和非光伏区中华绒螯蟹二龄蟹的养殖生长比较[J].淡水渔业,2021,51(3):108-112. [4] 张家华,刘兴国,顾兆俊,等.渔光互补生态经济特征及其发展方向[J].水产学报,2022,46(8):1525-1535. [5] 牛超,吴立峰,庞杨洋,等.光伏板对中华绒螯蟹养殖环境和生长的影响研究[J].复旦学报(自然科学版),2021,60(2):253-261. [6] TRAPANI K, REDÓN SANTAFÉ M. A review of floating photovoltaic installations:2007—2013[J]. Progress in Photovoltaics:Research and Applications,2015,23(4):524-532. [7] CHRISTENSEN V, WALTERS C J. Ecopath with Ecosim:methods, capabilities and limitations[J]. Ecological Modelling,2004,172(2/3/4):109-139. [8] 黄孝锋.五里湖生态系统ECOPATH模型的构建与评估[D].南京:南京农业大学,2011. [9] WIJNBLADH E, JÖNSSON B F, KUMBLAD L. Marine ecosystem modeling beyond the box:using GIS to study carbon fluxes in a coastal ecosystem[J]. Ambio,2006,35(8):484-495. [10] 贾佩峤.滆湖Ecopath模型构建及围网放养鲢鳙的生态效应[D].上海:上海海洋大学,2012. [11] 曾宪磊,魏宝成,刘兴国,等.基于Ecopath模型的复合养殖池塘构建[J].水产学报,2018,42(5):711-719. [12] 刘恩生,李云凯,臧日伟,等.基于Ecopath模型的巢湖生态系统结构与功能初步分析[J].水产学报,2014,38(3):417-425. [13] 陈作志,邱永松.南海北部生态系统食物网结构、能量流动及系统特征[J].生态学报,2010,30(18):4855-4865. [14] 胡高宇,张翔,黄晓林,等.基于Ecopath模型的海水池塘主要养殖模式比较分析[J].上海海洋大学学报,2023,32(4):716-729. [15] 周波.基于EwE模型的草鱼综合养殖池塘生态系统研究[D].青岛:中国海洋大学,2015. [16] 王玮,王俊杰,左平,等.基于Ecopath模型的西南黄海生态系统结构和能量流动分析[J].应用海洋学学报,2019,38(4):528-539. [17] 赵宇曦. 黄颡鱼多营养级控光养殖系统研究[D]. 上海:上海海洋大学, 2022. [18] 于佳,刘佳睿,王利,等.基于Ecopath模型的千岛湖生态系统结构和功能分析[J].水生生物学报,2021,45(2):308-317. [19] 许祯行,陈勇,田涛,等.基于Ecopath模型的獐子岛人工鱼礁海域生态系统结构和功能变化[J].大连海洋大学学报,2016,31(1):85-94. [20] 米玮洁,胡菊香,赵先富.Ecopath模型在水生态系统评价与管理中的应用[J].水生态学杂志,2012,33(1):127-130. [21] COLLÉTER M, VALLS A, GUITTON J, et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository[J]. Ecological Modelling,2015,302:42-53. [22] LUDOVISI A, PANDOLFI P, ILLUMINATA TATICCHI M. The strategy of ecosystem development:specific dissipation as an indicator of ecosystem maturity[J]. Journal of Theoretical Biology,2005,235(1):33-43. [23] 奉杰,田相利,董双林,等.不同三疣梭子蟹混养系统能量收支的研究[J].中国海洋大学学报(自然科学版),2015,45(3):39-47. [24] LASSALLE G, LOBRY J, LE LOC'H F, et al. Ecosystem status and functioning:searching for rules of thumb using an intersite comparison of food-web models of Northeast Atlantic continental shelves[J]. ICES Journal of Marine Science,2013,70(1):135-149. [25] 赵静,章守宇,许敏.枸杞海藻场生态系统能量流动模型初探[J].上海海洋大学学报,2010,19(1):98-104. [26] 杨昊陈.基于Ecopath模型的唐山海洋牧场人工鱼礁区生态效果评估[D].大连:大连海洋大学,2019. [27] 汪倩,胡庚东,宋超,等.基于Ecopath评估蟹-稻复合生态系统营养结构和能量流动[J].生态学报,2020,40(14):4852-4862. [28] 赵博礼.渔光一体模式中环境微生物群落结构及多样性的研究[D].武汉:华中农业大学,2019. [29] 陈燕红,杨紫红,喻国辉,等.光照、氧气、pH和盐度对沼泽红假单胞菌2-8菌株生长和亚硝酸盐消除的影响[J].南方水产,2010,6(4):1-5. [30] PANT H K, REDDY K R. Phosphorus sorption characteristics of estuarine sediments under different redox conditions[J]. Journal of Environmental Quality,2001,30(4):1474-1480.