Effects of Three Aerobic Denitrifying Bacteria on Intestinal Morphology and Microbiota of Zebrafish
ZHENG Yazhi1,2, LU Huijie2, XU Jingxuan1,2, LIU Fengkun1,2, RUAN Zhuohao2, YIN Peng2, GUO Qiang2, MA Yanping3, DAI Ruizhi4, LIAO Jinsong4, DAI Jieyu4, GUO Hui1, HUANG Wen1,2
1. College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; 2. Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Guangdong Academy of Agricultural Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; 3. Institute of Animal Health, Guangzhou 510640, China; 4. Juncheng Herui Environmental Technology Group Co., Ltd., Yunfu 527300, China
Abstract:In the experiment the effects of three aerobic denitrifying bacteria, Klebsiella oxytoca DZ9, K. oxytoca WM27, and Serratia marcescens DZ16, on the intestinal morphology and microbial community of zebrafish Danio rerio were systematically evaluated through histopathological analysis and high-throughput sequencing technology, aiming to provide safe and efficient candidate strains for aquaculture water quality modulation and wastewater treatment. A total of 360 zebrafish were randomly divided into four groups, (control and three treatment groups with triplicate biological replicates), receiving bacterial suspensions regular of 106 cfu/mL) for 30 days. The results indicated that: no significant differences in survival rates were observed between treatment and control groups, with maintained intestinal structural integrity characterized by well-arranged villus and absence of pathological lesions, indicating good biosafety. Significant improvement in several intestinal development parameters were detected, including increased villus height and goblet cell density across treatment groups (P<0.05), with K. oxytoca WM27 group′s thickening of muscular layer (P<0.05). Microbial community analysis revealed significant reduction in potentially pathogens, such as Aeromonas and Plesiomonas, concurrent with increased beneficial microbial taxa including Bradyrhizobium, Hyphomicrobium, Cetobacterium, Lactobacillus, and Reyranella (P<0.05). This microbial modulation potentially enhances intestinal barrier integrity and reduces inflammation risks through competitive colonization mechanisms. The results demonstrate that specific aerobic denitrifying strains can effectively improve intestinal morphology and microbiota composition of zebrafish, providing theoretical basis for developing microbial agents in sustainable aquaculture practices.
[1] FAO. The state of world fisheries and aquaculture[R]. Rome:FAO,2021:17-32. [2] HUANG F, PAN L Q, HE Z Y, et al. Culturable heterotrophic nitrification-aerobic denitrification bacterial consortia with cooperative interactions for removing ammonia and nitrite nitrogen in mariculture effluents[J]. Aquaculture,2020,523:735211. [3] XU M, XU R Z, SHEN X X, et al. The response of sediment microbial communities to temporal and site-specific variations of pollution in interconnected aquaculture pond and ditch systems[J]. Science of the Total Environment,2022,806:150498. [4] 唐忠林,张佳佳,周国勤,等.氨氮对大口黑鲈北方亚种引进种F1代幼鱼急性毒性及生理变化的影响[J].淡水渔业,2023,53(5):97-103. [5] 姜令绪,潘鲁青,肖国强.氨氮对凡纳对虾免疫指标的影响[J].中国水产科学,2004,11(6):537-541. [6] XIAN J N, WANG A L, CHEN X D, et al. Cytotoxicity of nitrite on haemocytes of the tiger shrimp, Penaeus monodon, using flow cytometric analysis[J]. Aquaculture,2011,317(1/2/3/4):240-244. [7] SUN F L, WANG Y S, WANG C Z, et al. Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment[J]. Aquaculture,2019,507:196-202. [8] AHMAD A L, CHIN J Y, MOHD HARUN M H Z, et al. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater:a review[J]. Journal of Water Process Engineering,2022,46:102553. [9] ZHANG W, CHU H Q, YANG L B, et al. Technologies for pollutant removal and resource recovery from blackwater:a review[J]. Frontiers of Environmental Science & Engineering,2023,17(7):83. [10] 郭静文.好氧反硝化细菌的筛选及菌藻联合对养殖废水的处理[D].广州:广州大学,2020. [11] 谢凤行,张峰峰,周可,等.水质净化乳酸菌的分离鉴定及发酵参数优化[J].微生物学报,2017,57(2):304-314. [12] 王光玉,韩亚萌,冯亚丽,等.海洋光合细菌筛选及其对养殖水体修复效果的测定[J].渔业现代化,2019,46(3):22-29. [13] 阳龙江,韩璐璐,杨成年,等.一株内循环流水养殖池塘光合细菌的分离鉴定及氮磷去除能力的研究[J].渔业现代化,2021,48(1):33-40. [14] 黎建斌,何为,李大列,等.高活性荚膜红假单胞菌分离鉴定及应用[J].南方农业学报,2012,43(4):540-543. [15] 冯雨薇,苏新国,孙慧明,等.一株耐高氨氮好氧反硝化细菌的鉴定及脱氮性能研究[J].南方水产科学,2023,19(6):107-115. [16] 赵洋,孙慧明,林浩澎,等.一株安全高效的好氧反硝化菌Pseudomonasstutzeri DZ11的生物安全性及脱氮性能研究[J].生物技术通报,2022,38(10):226-234. [17] 林浩澎,孙慧明,罗娉婷,等.一株耐碱变形假单胞菌ZY-3的鉴定及其脱氮特性[J].微生物学通报,2022,49(10):4066-4079. [18] EL-SAADONY M T, ALAGAWANY M, PATRA A K, et al. The functionality of probiotics in aquaculture:an overview[J]. Fish & Shellfish Immunology,2021,117:36-52. [19] 谢芝玲,徐佳莹,潘登,等.复合微生物菌剂在长毛对虾标苗养殖过程中的应用研究[J].激光生物学报,2020,29(3):225. [20] EDDY F B. Ammonia in estuaries and effects on fish[J]. Journal of Fish Biology,2005,67(6):1495-1513. [21] LIAO G W, WU Q P, MO B H, et al. Intestinal morphology and microflora to Vibrio alginolyticus in Pacific white shrimp (Litopenaeus vannamei)[J]. Fish & Shellfish Immunology,2022,121:437-445. [22] 张伟军,张彧,潘思逸.污泥处理过程中毒害有机污染物的迁移转化规律与毒性效应[J].安全与环境工程,2022,29(2):183-198. [23] 刘凤坤,赵吉臣,许敬轩,等.耐盐好氧反硝化菌黏质沙雷氏菌HL4的分离鉴定及脱氮性能[J].广东海洋大学学报,2024,44(4):38-46. [24] 刘笑楠,吴昊,郑丽利,等.全氟辛烷磺酸对斑马鱼胚胎的急性毒性与致畸效应[J].水产科学,2023,42(1):11-20. [25] SHU H, MA Y H, LU H J, et al. Simultaneous aerobic nitrogen and phosphate removal capability of novel salt-tolerant strain, Pseudomonas mendocina A4:characterization, mechanism and application potential[J]. Bioresource Technology,2024,393:130047. [26] 吴振超.洛氏[XC鱥.tif;%85%85,JZ]肠道产酶益生菌的筛选及其粘附特性分析[D].长春:吉林农业大学,2020. [27] 陈国军,胡君易,林晓霞,等.EM菌在鱼菜共生循环农业生产中的应用[J].现代农业研究,2022,28(6):111-113. [28] SHU H, SUN H M, HUANG W, et al. Nitrogen removal characteristics and potential application of the heterotrophic nitrifying-aerobic denitrifying bacteria Pseudomonas mendocina S16 and Enterobacter cloacae DS′5 isolated from aquaculture wastewater ponds[J]. Bioresource Technology,2022,345:126541. [29] SUO Y T, LI E C, LI T Y, et al. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2017,63:87-96. [30] 麻丹萍,王晓璐,王友红,等.益生菌和中草药复方制剂对凡纳滨对虾生长、非特异性免疫、代谢能力和肠道组织结构的影响[J].水产科技情报,2024,51(6):381-389. [31] 张冬梅,颜浩骁,罗茂林,等.饲料中添加枯草芽孢杆菌对大口黑鲈幼鱼生长、肠道组织结构、抗氧化能力、免疫能力和肠炎的影响[J].动物营养学报,2022,34(1):575-588. [32] 付维来.耐盐Pseudomonasstutzeri F2转化铵态氮和亚硝态氮代谢机理及其在海水鲈鱼养殖的应用[D].无锡:江南大学,2023. [33] TABASSUM T, SOFI UDDIN MAHAMUD A G M, ACHARJEE T K, et al. Probiotic supplementations improve growth, water quality, hematology, gut microbiota and intestinal morphology of Nile tilapia[J]. Aquaculture Reports,2021,21:100972. [34] 苗淑彦,韩蓓,胡俊涛,等.饲料中添加不同浓度四环素对乌鳢生长性能、肠道菌群组成和组织形态的影响[J].动物营养学报,2019,31(12):5813-5822. [35] SOMMER F, ADAM N, JOHANSSON M E V, et al. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture[J]. PLoS One,2014,9(1):e85254. [36] SCHROEDER B O. Fight them or feed them:how the intestinal mucus layer manages the gut microbiota[J]. Gastroenterology Report,2019,7(1):3-12. [37] TORRECILLAS S, TEROVA G, MAKOL A, et al. Dietary phytogenics and galactomannan oligosaccharides inlow fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) juveniles:effects on gill structure and health and implications on oxidative stress status[J]. Frontiers in Immunology,2021,12:663106. [38] 苏绮玲,黄安琪,黄敏仪,等.聚碳酸酯、聚乙烯微塑料对小鼠小肠结构与屏障基因的影响[J].食品安全质量检测学报,2024,15(3):265-276. [39] 李园媛.转录因子Cdx1b和Ascl1a在肠道细胞中的功能及作用机制研究[D].重庆:西南大学,2022. [40] WEI H, DONG L, WANG T T, et al. Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure[J]. FEMS Microbiology Ecology,2010,73(3):577-586. [41] 董学兴,吕林兰,赵卫红,等.不同养殖模式下罗氏沼虾肠道菌群结构特征及其与环境因子的关系[J].上海海洋大学学报,2019,28(4):501-510. [42] STEPHENS W Z, BURNS A R, STAGAMAN K, et al. The composition of the zebrafish intestinal microbial community varies across development[J]. The ISME Journal,2016,10(3):644-654. [43] ROESELERS G, MITTGE E K, STEPHENS W Z, et al. Evidence for a core gut microbiota in the zebrafish[J]. The ISME Journal,2011,5(10):1595-1608. [44] 郁维娜,戴文芳,陶震,等.健康与患病凡纳滨对虾肠道菌群结构及功能差异研究[J].水产学报,2018,42(3):399-409. [45] HOOPER L V, GORDON J I. Commensal host-bacterial relationships in the gut[J]. Science,2001,292(5519):1115-1118. [46] LIN S M, ZHOU X M, ZHOU Y L, et al. Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide[J]. Fish & Shellfish Immunology,2020,103:135-142. [47] WEXLER H M. Bacteroides:the good, the bad, and the nitty-gritty[J]. Clinical Microbiology Reviews,2007,20(4):593-621. [48] SCHWIERTZ A, TARAS D, SCHÄFER K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity,2010,18(1):190-195. [49] 李倩,孙丽慧,姜建湖,等.放养密度对IPRA养殖太湖鲂鲌生长、抗氧化酶及肠道微生物群落的影响[J].水生生物学报,2023,47(3):479-487. [50] TSUKAMOTO T, KINOSHITA Y, SHIMADA T, et al. Two epidemics of diarrhoeal disease possibly caused by Plesiomonas shigelloides[J]. Journal of Hygiene,1978,80(2):275-280. [51] 水晓梅,林舸,赵欣涛,等.大豆浓缩蛋白对大黄鱼生长和肠道微生物菌群的影响[J].中国水产科学,2021,28(1):37-47. [52] 陈曦.乳杆菌属的益生菌保健功能及研究进展[J].中国乳品工业,2011,39(7):40-43. [53] HAO Y T, WU S G, XIONG F, et al. Succession and fermentation products of grass carp (Ctenopharyngodon idellus) hindgut microbiota in response to an extreme dietary shift[J]. Frontiers in Microbiology,2017,8:1585. [54] GUO X Z, RAN C, ZHANG Z, et al. The growth-promoting effect of dietary nucleotides in fish is associated with an intestinal microbiota-mediated reduction in energy expenditure[J]. The Journal of Nutrition,2017,147(5):781-788. [55] WANG A R, ZHANG Z, DING Q W, et al. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish[J]. Gut Microbes,2021,13(1):1-15. [56] DELAMUTA J R M, RIBEIRO R A, ORMEÑO-ORRILLO E, et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov. , nitrogen-fixing symbionts of tropical forage legumes[J]. International Journal of Systematic and Evolutionary Microbiology,2015,65(12):4424-4433. [57] WEI J, GUO X W, LIU H, et al. The variation profile of intestinal microbiota in blunt snout bream (Megalobrama amblycephala) during feeding habit transition[J]. BMC Microbiology,2018,18(1):99. [58] 李礼,姜海波,姜志强,等.饲料添加杜仲皮水提物对虹鳟生长、肠道组织学及菌群多样性的影响[J].大连海洋大学学报,2020,35(4):481-490. [59] DEDYSH S N, HAUPT E S, DUNFIELD P F. Emended description of the family Beijerinckiaceae and transfer of the Genera Chelatococcus and Camelimonas to the family Chelatococcaceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2016,66(8):3177-3182. [60] FENG L J, YANG J Y, YU H, et al. Response of denitrifyingcommunity, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor[J]. Bioresource Technology,2020,308:123274. [61] 黄永节,翁晓姚,张薇薇,等.净水厂生物活性炭微生物解析和风险研究进展[J].应用化工,2024,53(8):1874-1879.