|
|
基于DNA分子生物学食性研究领域的文献计量分析 |
张宇洋1, 董建宇1, 孙昕1, 张秀梅2,3 |
1.中国海洋大学,海水养殖教育部重点实验室,山东 青岛 266003; 2.浙江海洋大学 水产学院,浙江 舟山 316022; 3.青岛海洋科学与技术(试点)国家实验室,海洋渔业科学与食物产出过程功能实验室,山东 青岛 266072 |
|
A Review of Bibliometric Analysis of Feeding Habits on DNA-Based Molecular Dietary Research |
ZHANG Yuyang1, DONG Jianyu1, SUN Xin1, ZHANG Xiumei2,3 |
1. The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; 2. College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; 3. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266072, China |
引用本文: |
张宇洋, 董建宇, 孙昕, 张秀梅. 基于DNA分子生物学食性研究领域的文献计量分析[J]. 水产科学, 2022, 41(1): 160-172.
ZHANG Yuyang, DONG Jianyu, SUN Xin, ZHANG Xiumei. A Review of Bibliometric Analysis of Feeding Habits on DNA-Based Molecular Dietary Research. Fisheries Science, 2022, 41(1): 160-172.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.20163 或 http://www.shchkx.com/CN/Y2022/V41/I1/160 |
[1]PETHYBRIDGE H R, CHOY C A, POLOVINA J J, et al. Improving marine ecosystem models with biochemical tracers[J].Annual Review of Marine Science,2018,10(1):199-228. [2]刘刚,宁宇,夏晓飞,等.高通量测序技术在野生动物食性分析中的应用[J].生态学报,2018,38(9):3347-3356. [3]窦永静,常亮,吴东辉.土壤动物食物网研究方法[J].生态学杂志,2015,34(1):247-255. [4]高小迪,陈新军,李云凯.水生食物网研究方法的发展和应用[J].中国水产科学,2018,25(6):1347-1360. [5]TRAUGOTT M. The prey spectrum of larval and adult Cantharis species in arable land:an electrophoretic approach[J].Pedobiologia,2003,47(2):161-169. [6]WALTON M P, POWELL W, LOXDALE H D, et al. Electrophoresis as a tool for estimating levels of hymenopterous parasitism in field populations of the cereal aphid, Sitobion avenue[J].Entomologia Experimentalis et Applicata,1990,54(3):271-279. [7]SYMONDSON W O C. Molecular identification of prey in predator diets[J].Molecular Ecology,2002,11(4):627-641. [8]TRAUGOTT M, KAMENOVA S, RUESS L, et al. Chapter three—Empirically characterising trophic networks:what emerging DNA-based methods, stable isotope and fatty acid analyses can offer [M]//WOODWARD G, BOHAN D A. Ecological Networks in an Agricultural World. Amsterdam: Elsevier,2013,49:177-224. [9]HÖSS M, KOHN M, PÄÄBO S, et al. Excrement analysis by PCR[J].Nature,1992,359(6392):199. [10]ASAHIDA T, YAMASHITA Y, KOBAYASHI T. Identification of consumed stone flounder, Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Haan) using mitochondrial DNA analysis[J].Journal of Experimental Marine Biology and Ecology,1997,217(2):153-163. [11]AGUSTÍ N, DE VICENTE M C, GABARRA R. Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera:a new polymerase chain reaction-based technique for predator gut analysis[J].Molecular Ecology,1999,8(9):1467-1474. [12]REDD K S. Using DNA to explore predator diet in temperate marine ecosystems[D]. Hobart:University of Tasmania,2017. [13]HEBERT P D N, GREGORY T R. The promise of DNA barcoding for taxonomy[J].Systematic Biology,2005,54(5):852-859. [14]HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J].Proceedings. Biological Sciences,2003,270(1512):313-321. [15]VALENTINI A, POMPANON F, TABERLET P. DNA barcoding for ecologists[J].Trends in Ecology & Evolution,2009,24(2):110-117. [16]POMPANON F, DEAGLE B E, SYMONDSON W O C, et al. Who is eating what:diet assessment using next generation sequencing[J].Molecular Ecology,2012,21(8):1931-1950. [17]ZINGER L, BONIN A, ALSOS I G, et al. DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions[J].Molecular Ecology,2019,28(8):1857-1862. [18]ALBERDI A, AIZPURUA O, BOHMANN K, et al. Promises and pitfalls of using high-throughput sequencing for diet analysis[J].Molecular Ecology Resources,2019,19(2):327-348. [19]洪巧巧.长江口中国花鲈的食性及分子生物学在食性分析上的应用[D].上海:华东理工大学,2012. [20]邵昕宁,宋大昭,黄巧雯,等.基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J].生物多样性,2019,27(5):543-556. [21]周天成,胡思敏,林先智,等.基于18S rDNA条形码技术的珊瑚礁区塔形马蹄螺(Tectus pyramis)食性分析[J].海洋科学,2020,44(2):99-107. [22]王先锋,林承刚,许强,等.利用18S rDNA分子方法分析浒苔绿潮过境期间长牡蛎摄食情况的变化[J].海洋与湖沼,2017,48(6):1362-1370. [23]陆琪,胡强,施小刚,等.基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J].生物多样性,2019,27(9):960-969. [24]CHEN C M, IBEKWE-SANJUAN F, HOU J H. The structure and dynamics of cocitation clusters:a multiple-perspective cocitation analysis[J].Journal of the American Society for Information Science and Technology,2010,61(7):1386-1409. [25]李运景,侯汉清,裴新涌.引文编年可视化软件HistCite介绍与评价[J].图书情报工作,2006,50(12):135-138. [26]KING R A, READ D S, TRAUGOTT M, et al. Molecular analysis of predation:a review of best practice for DNA-based approaches[J].Molecular Ecology,2008,17(4):947-963. [27]VALENTINI A, MIQUEL C, NAWAZ M A, et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing:the trnL approach[J].Molecular Ecology Resources,2009,9(1):51-60. [28]DEAGLE B E, KIRKWOOD R, JARMAN S N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces[J].Molecular Ecology,2009,18(9):2022-2038. [29]DEAGLE B E, CHIARADIA A, MCINNES J, et al. Pyrosequencing faecal DNA to determine diet of little penguins:is what Goes in what comes out[J].Conservation Genetics,2010,11(5):2039-2048. [30]DEAGLE B E, TOLLIT D J, JARMAN S N, et al. Molecular scatology as a tool to study diet:analysis of prey DNA in scats from captive Steller sea lions[J].Molecular Ecology,2005,14(6):1831-1842. [31]ZEALE M R K, BUTLIN R K, BARKER G L A, et al. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces[J].Molecular Ecology Resources,2011,11(2):236-244. [32]PIÑOL J, MIR G, GOMEZ-POLO P, et al. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods[J].Molecular Ecology Resources,2015,15(4):819-830. [33]CLARE E L. Molecular detection of trophic interactions:emerging trends, distinct advantages, significant considerations and conservation applications[J].Evolutionary Applications,2014,7(9):1144-1157. [34]TOJU H, BABA Y G. DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above- and below-ground food webs[J].Zoological Letters,2018,4:4. [35]OLMOS-PÉREZ L, ROURA Á, PIERCE G J, et al. Diet composition and variability of wild Octopus vulgaris and Alloteuthis media (Cephalopoda) paralarvae:a metagenomic approach[J].Frontiers in Physiology,2017,8:321. [36]CHEN Y, GILES K L, PAYTON M E, et al. Identifying key cereal aphid predators by molecular gut analysis[J].Molecular Ecology,2000,9(11):1887-1898. [37]ZAIDI R H, JAAL Z, HAWKES N J, et al. Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators[J].Molecular Ecology,1999,8(12):2081-2087. [38]BROWN D S, BURGER R, COLE N, et al. Dietary competition between the alien Asian musk shrew (Suncus murinus) and a re-introduced population of Telfair′s skink (Leiolopisma telfairii)[J].Molecular Ecology,2014,23(15):3695-3705. [39]KARTZINEL T R, CHEN P A, COVERDALE T C, et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(26):8019-8024. [40]RUPPERT K M, KLINE R J, RAHMAN M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding:a systematic review in methods, monitoring, and applications of global eDNA[J].Global Ecology and Conservation,2019,17:e00547. [41]SIEGENTHALER A, WANGENSTEEN O S, BENVENUTO C, et al. DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist[J].Molecular Ecology,2019,28(2):232-249. [42]HAMBÖCK P A, WEINGARTNER E, DALÉN L, et al. Spatial subsidies in spider diets vary with shoreline structure:complementary evidence from molecular diet analysis and stable isotopes[J].Ecology and Evolution,2016,6(23):8431-8439. [43]KAMENOVA S, MAYER R, RUBBMARK O R, et al. Comparing three types of dietary samples for prey DNA decay in an insect generalist predator[J].Molecu-lar Ecology Resources,2018,18(5):966-973. [44]RENNSTAM RUBBMARK O, SINT D, CUPIC S, et al. When to use next generation sequencing or diagnostic PCR in diet analyses[J].Molecular Ecology Resources,2019,19(2):388-399. [45]THOMAS A C, NELSON B W, LANCE M M, et al. Harbour seals target juvenile salmon of conservation concern[J].Canadian Journal of Fisheries and Aquatic Sciences,2017,74(6):907-921. [46]CAVALLO C, CHIARADIA A, DEAGLE B E, et al. Molecular analysis of predator scats reveals role of salps in temperate inshore food webs[J].Frontiers in Marine Science,2018,5:381. [47]CLARKE L J, TREBILCO R, WALTERS A, et al. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen Axis[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2020,174. [48]CZENZE Z J, TUCKER J L, CLARE E L, et al. Spatiotemporal and demographic variation in the diet of New Zealand lesser short-tailed bats (Mystacina tuberculata)[J].Ecology and Evolution,2018,8(15):7599-7610. [49]GORDON R, IVENS S, AMMERMAN L K, et al. Molecular diet analysis finds an insectivorous desert bat community dominated by resource sharing despite diverse echolocation and foraging strategies[J].Ecology and Evolution,2019,9(6):3117-3129. [50]DRINKWATER R, SCHNELL I B, BOHMANN K, et al. Using metabarcoding to compare the suitability of two blood-feeding leech species for sampling mammalian diversity in North Borneo[J].Molecular Ecology Resources,2019,19(1):105-117. [51]BOHMANN K, EVANS A, GILBERT M T P, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J].Trends in Ecology & Evolution,2014,29(6):358-367. [52]CASEY J M, MEYER C P, MORAT F, et al. Reconstructing hyperdiverse food webs:gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs[J].Methods in Ecology and Evolution,2019,10(8):1157-1170. [53]MALOY A P, NELLE P, CULLOTY S C, et al. Identifying trophic variation in a marine suspension feeder:DNA- and stable isotope-based dietary analysis in Mytilus spp.[J].Marine Biology,2013,160(2):479-490. [54]KERLEY G I H, LANDMAN M, FICETOLA G F, et al. Diet shifts by adult flightless dung beetles Circellium bacchus, revealed using DNA metabarcoding, reflect complex life histories[J].Oecologia,2018,188(1):107-115. [55]BESSEY C, JARMAN S N, STAT M, et al. DNA metabarcoding assays reveal a diverse prey assemblage for Mobula rays in the Bohol Sea, Philippines[J].Ecology and Evolution,2019,9(5):2459-2474. [56]BROWN D S, EBENEZER K L, SYMONDSON W O C. Molecular analysis of the diets of snakes:changes in prey exploitation during development of the rare smooth snake Coronella austriaca[J].Molecular Ecology,2014,23(15):3734-3743. [57]ERIĆ JELASK L, JURASOVIĆ J, BROWN D S, et al. Molecular field analysis of trophic relationships in soil-dwelling invertebrates to identify mercury, lead and cadmium transmission through forest ecosystems[J].Molecular Ecology,2014,23(15):3755-3766. [58]BOYER S, WRATTEN S D, HOLYOAKE A, et al. Using next-generation sequencing to analyse the diet of a highly endangered land snail (Powelliphanta augusta) feeding on endemic earthworms[J].PLoS One,2013,8(9):e75962. [59]席晓晴,鲍宝龙,章守宇.DNA条形码在马鞍列岛海域皮氏叫姑鱼胃含物鉴定中的应用[J].水产学报,2017,41(10):1533-1541. [60]纪东平,卞晓东,宋娜,等.荣成俚岛斑头鱼摄食生态研究[J].中国水产科学,2015,22(1):88-98. [61]龚玉艳,詹凤娉,杨玉滔,等.南海鸢乌贼摄食习性的初步研究[J].南方水产科学,2016,12(4):80-87. [62]王雪芹.稻田捕食性天敌对稻飞虱的捕食作用及其生态学机理研究[D].杭州:浙江大学,2018. [63]林先智,胡思敏,刘胜,等.传统测序与高通量测序在稚鱼食性分析中的比较[J].应用生态学报,2018,29(9):3093-3101. [64]NAYFACH S, POLLARD K S. Toward accurate and quantitative comparative metagenomics[J].Cell,2016,166(5):1103-1116. [65]钟文涛.基于分子生物技术的狼蛛摄食分析及控虫效能评价[D].长沙:湖南师范大学,2019. [66]陈炼,吴琳,刘燕,等.环境DNA metabarcoding及其在生态学研究中的应用[J].生态学报,2016,36(15):4573-4582. [67]陈信忠,郭书林,龚艳清.鱼类DNA条形码技术的应用进展[J].水产科学,2017,36(6):834-842. [68]ARRIZABALAGA-ESCUDERO A, MERCKX T, GARCÍA-BAQUERO G, et al. Trait-based functional dietary analysis provides a better insight into the foraging ecology of bats[J].Journal of Animal Ecology,2019,88(10):1587-1600. [69]BOYER F, MERCIER C, BONIN A, et al. Obitools:a unix-inspired software package for DNA metabarcoding[J].Molecular Ecology Resources,2016,16(1):176-182. |
[1] |
刘红艳, 熊飞, 翟东东, 王莹, 夏明, 陈元元. 鲿科鱼类DNA条形码鉴定及系统进化研究[J]. 水产科学, 2023, 42(4): 575-584. |
[2] |
李玉龙, 鲍相渤, 高祥刚, 段妍, 王彬, 董婧, 李云峰. DNA条形码在海蜇食物组成鉴定中的应用[J]. 水产科学, 2022, 41(4): 614-621. |
[3] |
陈信忠,郭书林,龚艳清. 鱼类DNA条形码技术的应用进展[J]. 水产科学, 2017, 36(6): 834-842. |
[4] |
徐洁,王晓梅,李晶晶,陈池,李转转,张玲颖. 基于COⅠ序列绒螯蟹属DNA条形码和遗传多样性研究[J]. 水产科学, 2017, 36(4): 480-487. |
[5] |
孟学平,高如承,申欣,郑雯雯,赵娜娜,程汉良,田美. 基于CO Ⅰ的中国西施舌DNA条形码[J]. 水产科学, 2011, 30(10): 626-630. |
|
|
|
|