Abstract:In the study, the genetic diversity and population genetic structure were analyzed in 8 populations of yellow catfish Pelteobagrus fulvidraco collected from Yangtze River and Huaihe River systems in Anhui province based on mitochondrial cytochrome b (Cytb) partial sequence. Overall, 49 haplotypes were identified with 48 mutation sites detected in total of 212 sequences in length of 1122 bp. The base composition of all sequences showed strong A/T bias and anti-G bias. The eight populations of yellow catfish were characterized by medium/high haplotype diversity (0.554—0.949) and low nucleotide diversity (0.00105—0.00221). The genetic differentiation index (0.2590), gene flow (1.4305) and the hierarchical analysis of molecular variance (AMOVA) revealed that there were consistently significant genetic differentiations among all populations. Statistical parsimony network based on haplotypes and phylogenetic tree based on population genetic distance consistently indicated that the populations from Yangtze River and Huaihe River systems clustered together and formed an clade, respectively. The findings suggest that yellow catfish populations from Yangtze River basin and Huaihe River basins in Anhui province have developed significantly divergent genetic structures due to geographic isolation and that provide basic information for genetic assessment, being crucial for establishing of fisheries management and strategies for the species.
胡玉婷, 段国庆, 凌俊, 周华兴, 潘庭双, 江河. 长江、淮河水系安徽区段黄颡鱼的群体遗传结构研究[J]. 水产科学, 2020, 39(6): 804-812.
HU Yuting, DUAN Guoqing, LING Jun, ZHOU Huaxing, PAN Tingshuang, JIANG He. Population Genetic Structure of Yellow Catfish Pelteobagrus fulvidraco from the Yangtze River and Huaihe River Basins in Anhui Province. Fisheries Science, 2020, 39(6): 804-812.
[1]成庆泰,郑葆珊.中国鱼类系统检索(上册)[M].北京:科学出版社,1987:213-214. [2]湖北省水生生物研究所鱼类研究室.长江鱼类[M].北京:科学出版社,1976:170-171. [3]郭新红,刘少军,刘巧,等.鱼类线粒体DNA研究新进展[J].遗传学报,2004,31(9):983-1000. [4]肖武汉,张亚平.鱼类线粒体DNA的遗传与进化[J].水生生物学报,2000,24(4):384-391. [5]Cantatore P, Roberti M, Pesole G, et al. Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals [J]. Journal of Molecular Evolution,1994,39(6):589-597. [6]易金鑫,代应贵,孙际佳,等.北盘江下游尼罗罗非鱼群体Cytb基因多态性[J].水产科学,2019,38(5):716-720. [7]李芬,陈绮萍,何佩莹,等.北江大刺鳅(Mastacembelus armatus)的核型分析及线粒体Cytb基因和D-loop的遗传多样性[J].海洋与湖沼,2019,50(2):449-454. [8]蒲艳,田辉伍,陈大庆,等.长江中上游圆筒吻鮈群体线粒体Cytb遗传多样性分析[J].淡水渔业,2019,49(1):14-19. [9]库喜英,周传江,何舜平.中国黄颡鱼的线粒体DNA多样性及其分子系统学[J].生物多样性,2010,18(3):262-274. [10]钟立强,刘朋朋,潘建林,等.长江中下游5个湖泊黄颡鱼(Pelteobagrus fulvidraco)种群线粒体细胞色素b基因的遗传变异分析[J].湖泊科学,2013,25(2):302-308. [11]张鹤千,杨子拓,李桂峰,等.珠江流域野生黄颡鱼Pelteobagrus fulvidraco的Cyt b基因序列分析[J].中山大学学报:自然科学版,2015,54(5):102-108. [12]Xiao W H, Zhang Y P, Liu H Z. Molecular systematics of Xenocyprinae (teleostei:Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia [J]. Molecular Phylogenetics and Evol,2001,18(2):163-173. [13]Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny [J]. Bioinformatics,1996,12(6):543-548. [14]Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic Acids Symposium Series,1999,41(2):95-98. [15]Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics,2009,25(11):1451-1452. [16]Kumar S, Nei M, Dudley J, et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Briefings in Bioinformatics,2008,9(4):299-306. [17]Rohl A. Network: a program package for calculating phylogenetic networks, Version 5.0.1.1 [EB/OL].(2019)[2019-08-06] http://www.fluxus-engineering.com/. [18]Excoffier L, Lischer H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows [J]. Molecular Ecology Resources,2010,10(3):564-567. [19]Hudson R R, Slatkint M, Maddison W P. Estimation of levels of gene flow from DNA sequence data [J]. Genetics,1992,132:583-589. [20]Kocher T D, Thomas W K, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers [J]. PNAS,1989,86(16):6196-6200. [21]Hochachka P, Mommsen T P. Biochemistry and molecular biology of fish [M]. London:Elsevier Science Publishers,1993:1-38. [22]Cantatore P, Roberti M, Pesole G, et al. Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals [J]. Journal of Molecular Evolution,1994,39(6):589-597. [23]Karl S A, Wilson D S. Phylogeography and systematics of the mud turtle, Kinosternon baurii [J]. Copeia,2001,2001(3):797-801. [24]丁言伟.黄颡鱼属(硬骨鱼纲·鲿科)鱼类分子系统发育及种群遗传结构的研究[D].武汉:华中农业大学,2005. [25]胡玉婷,江河,胡王,等.安徽长江流域黄鳝六个地理种群的遗传变异研究[J].四川动物,2015,34(1):21-28. [26]胡玉婷,江河,潘庭双,等.安徽淮河水系黄鳝群体遗传多样性及其遗传结构[J].安徽农业大学学报,2016,43(4):529-535. [27]肖明松,崔峰,康健,等.淮河野生鲇鱼线粒体Cytb基因的序列变异与遗传结构分析[J].动物学杂志,2013,48(1):75-86. [28]方冬冬,顾钱洪,周传江,等.淮河源区餐鱼群体遗传多样性研究[J].水产科学,2018,37(5):665-673. [29]程起群,吕浩,逄娇慧,等.长江流域4个野生大眼鳜群体的遗传多样性分析[J].中国水产科学,2019,26(4):774-782. [30]Wright S. Evolution and the genetics of populations. volume 4: variability within and among natural populations [M]. Chicago:University of Chicago Press,1978:580. [31]Slatkin M. Gene flow and the geographic structure of natural populations [J]. Science,1987,236(4803):787-792.