Community Characteristics of Phytoplankton: a Case in a Macrophyte-Dominated Sub-Lake of Baiyangdian Lake during Overgrowth Period of Submerged Macrophytes
LIU Yang1,2, LI Zhifei1,3, ZHANG Xiaoke4, LIU Xueguang5, XIE Jun1,3, WANG Guangjun1,3, ZHANG Junwang1,2
1. Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; 3. Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou 510380, China; 4. Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing 246133, China; 5. Liaoning Province Engineering Center of Modern Agricultural Production Base, Shenyang 110003, China
Abstract:Species composition, cell abundance, and biomass of phytoplankton were surveyed in 4 sampling zones with 4 sampling site in each zone in overgrowth of submerged macrophytes in Baiyangdian Lake (Shihoudian Sub-lake) in August 2018 to understand the community characteristics of phytoplankton during the explosive reproduction period of submerged macrophytes. The status of water quality was evaluated during the overgrowth period. A total of 68 species (51 genera) of phytoplankton were observed over a total cultured period, belonging to six major functional groups, i.e, Chlorophyta (30 species), Bacillariophyta (16 species), Cyanophyta (16 species), Euglenophyta (3 species), Pyrrophyta (1 species), and Cryptophyta (1 species), with phytoplankton abundance of 5.68×106—17.24×106 cells/L (average 9.13×106 cells/L)and phytoplankton biomass of 1.42—8.71 mg/L (average 4.61 mg/L). Redundancy analysis revealed that transparency, total dissolved solids, conductivity and pH were the most important environmental factors affecting the spatial distribution of phytoplankton species composition in summer. The water quality of Shihoudian Sub-lake was found to be β-meso-polluted to oligo-polluted judging from the phytoplankton diversity evaluation. Compared with algal regions and non-overgrowth period in Baiyangdian Lake, the characteristics of phytoplankton community in the overgrowth period of submerged macrophytes displayed a great difference.The finding provides support for ecological restoration and functional enhancement of macrophyte-dominated sub-lake.
刘阳, 李志斐, 张晓可, 刘学光, 谢骏, 王广军, 张军旺. 白洋淀草型淀区沉水植物暴发期浮游植物群落特征[J]. 水产科学, 2021, 40(6): 851-859.
LIU Yang, LI Zhifei, ZHANG Xiaoke, LIU Xueguang, XIE Jun, WANG Guangjun, ZHANG Junwang. Community Characteristics of Phytoplankton: a Case in a Macrophyte-Dominated Sub-Lake of Baiyangdian Lake during Overgrowth Period of Submerged Macrophytes. Fisheries Science, 2021, 40(6): 851-859.
[1]白军红,赵庆庆,卢琼琼,等.白洋淀沼泽化区域土壤重金属含量的剖面分布特征——以烧车淀为例[J].湿地科学,2013,11(2):271-275. [2]刁晓君,黄彩虹,何连生,等.白洋淀草型与藻型湖泊沉水植物群落结构差异及影响因素[J].湿地科学,2013,11(3):366-371. [3]李晓春,崔惠敏.白洋淀湿地生态现状评价及保护对策[J].河北农业大学学报(农林教育版),2013,15(5):101-104. [4]刘录三.生物链调控湖泊富营养化技术:北方浅水湖泊白洋淀[M].北京:中国环境出版社,2017. [5]刘佩佩,白军红,赵庆庆,等.湖泊沼泽化与水生植物初级生产力研究进展[J].湿地科学,2013,11(3):392-397. [6]王洪兴,程红,孙霞,等.湖库大型水生植物过度生长的控制对策[J].农业环境与发展,2011,28(2):69-71. [7]杨卫东,颜培炎,唐永杰,等.草鱼对沉水植物过度生长的控制技术综述[J].天津农业科学,2014,20(9):92-95. [8]Tippett R. The ecology of freshwater phytoplankton (C.S.Reynolds)[J].Limnology and Oceanography,1987,32(3):779-780. [9]邱阳凌,林育青,刘俊杰,等.淮河干流及主要支流夏季浮游植物群落生物多样性评价[J].环境科学学报,2018,38(4):1665-1672. [10]黄祥飞.湖泊生态调查观测与分析[M].北京:中国标准出版社,2000. [11]金相灿,屠清瑛.湖泊富营养化调查规范[M].2版.北京:中国环境科学出版社,1990. [12]章宗涉,戌克文,沈国华.武汉东湖湖水的藻类生长潜力(AGP)测试[J]. 环境科学学报,1990,10(4):445-452. [13]周凤霞,陈剑虹.淡水微型生物与底栖动物图谱[M].2版.北京:化学工业出版社,2011. [14]Shannon C E. A mathematical theory of communication[J].Bell System Technical Journal,1948,27(3):379-423. [15]Clarke K, Warwick R. Change in marine communities: an approach to statistical analysis and interpretation[M].Plymouth:Plymouth marine laboratory, Natural environment research council,1994. [16]Muylaert K, Sabbe K, Vyverman W. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde,Belgium)[J].Estuarine,Coastal and Shelf Science,2000,50(5):673-687. [17]Flores L N, Barone R. Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Sicily, Italy)[J].Phytoplankton and Trophic Gradients,1998,369/370:163-178. [18]Braak C J F, Verdonschot P F M. Canonical correspondence analysis and related multivariate methods in aquatic ecology[J].Aquatic Sciences,1995,57(3):255-289. [19]Phillips G, Willby N J, Moss B. Submerged macrophyte decline in shallow lakes:what have we learnt in the last forty years?[J].Aquatic Botany,2016,135:37-45. [20]吴天浩,刘劲松,邓建明,等.大型过水性湖泊——洪泽湖浮游植物群落结构及其水质生物评价[J].湖泊科学,2019,31(2):440-448. [21]吴佳梦,徐娜娜,张文珺,等.浙江舟山定海护城河浮游植物优势种生态位与种间联结性季节性分析[J].湖泊科学,2019,31(2):429-439. [22]李源,何连生,成杰民.白洋淀浮游植物调查及水质评价[J].山东师范大学学报(自然科学版),2010,25(1):102-105. [23]田志富.基于RDA的白洋淀浮游植物群落结构动态特征分析[D].保定:河北大学,2012. [24]Gao Y N, Dong J, Fu Q Q, et al. Allelopathic effects of submerged macrophytes on phytoplankton[J].Allelopathy Journal,2017,40(1):1-22. [25]康丽娟,许海,邹伟,等.菹草对湖泊水质及浮游植物群落结构的影响[J].环境科学,2020,41(9):177-185. [26]Zeng L, He F, Zhang Y, et al. How submerged macrophyte restoration promotes a shift of phytoplankton community in a shallow subtropical lake[J].Polish Journal of Environmental Studies,2017,26(3):1363-1373. [27]代志刚,蔺庆伟,易科浪,等.杭州西湖浮游植物群落对沉水植物恢复的响应[J].水生态学杂志,2017,38(5):35-45. [28]王瑜,刘录三,舒俭民,等.白洋淀浮游植物群落结构与水质评价[J].湖泊科学,2011,23(4):575-580. [29]彭凯,李太民,刘利,等.苏北骆马湖浮游植物群落结构及其水质生物评价[J].湖泊科学,2018,30(1):183-191. [30]梁晓林,赵志楠,张月明,等.2013年夏季昌黎生态监控区浮游植物群落结构特征分析[J].水产科学,2015,34(2):89-94. [31]张萍,李宝华,刘宪斌,等.海河干流浮游植物群落及其与环境因子的典范对应分析[J].水产科学,2015,34(6):344-350. [32]金磊,李林钰,周杨,等.白洋淀三大典型水域浮游植物群落及水质评价[J].河北大学学报(自然科学版),2017,37(3):329-336. [33]孟睿,何连生,过龙根,等.长江中下游草型湖泊浮游植物群落及其与环境因子的典范对应分析[J].环境科学,2013,34(7):2588-2596. [34]Karydis M, Tsirtsis G. Ecological indices:a biometric approach for assessing eutrophication levels in the marine environment[J].Science of the Total Environment,1996,186(3):209-219. [35]宋楠,李慧,赵然,等.基于浮游植物评价水体质量的方法比对[J].黑龙江环境通报,2016,40(2):30-32. [36]倪蒙,原居林,刘梅,等.建塘江浮游植物群落结构特征及与环境因子的关系[J].水产科学,2019,38(3):333-340. [37]Osowiecki A, Łysiak-Pastuszak E, Piatkowska Z. Testing biotic indices for marine zoobenthos quality assessment in the Polish sector of the Baltic Sea[J].Journal of Marine Systems,2008,74:S124-S132. [38]王圣瑞,倪兆奎,席海燕.我国湖泊富营养化治理历程及策略[J].环境保护,2016,44(18):15-19. [39]张嘉琦,方祥光,高晓月,等.沉水植物过度生长的生物控制技术研究进展[J].农业环境与发展,2013,30(3):66-68. [40]毛志刚,谷孝鸿,陆小明,等.太湖东部不同类型湖区底泥疏浚的生态效应[J].湖泊科学,2014,26(3):385-392.