Research Progress on Bacterial-Algal Symbiosis Biofilm in Aquaculture Tailwater Treatment: a Review
ZE Wuge1, LI Tiejun1,2, QIAO Ling1,2, YUAN Tao3, GUO Yuanming1,2, REN Chengzhe4
1. Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China; 2. Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; 3. Zhoushan Dinghai Ecological Environment Monitoring Station (Zhoushan Dinghai Ecological Environment Protection Technology Service Center), Zhoushan 316000, China; 4. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
[1] 张文博,马旭洲.2000年来中国水产养殖发展趋势和方向[J] .上海海洋大学学报,2020,29(5):661-674. [2] 国家统计局.2023中国统计年鉴[M] .北京:中国统计出版社,2023. [3] SUN X Y, LI X P, TANG S, et al. A review on algal-bacterial symbiosis system for aquaculture tail water treatment[J] . The Science of the Total Environment,2022,847:157620. [4] VAN DEN HENDE S, BEELEN V, BORE G, et al. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs:from lab reactors to an outdoor raceway pond[J] . Bioresource Technology,2014,159:342-354. [5] LIU P P, QIU L P, ZHANG S B, et al. Recent development of scale marine aquaculture wastewater treatment[C] //Proceedings of the 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Amsterdam:Atlantis Press,2016:496-499. [6] 唐菠,钟高辉.水产养殖尾水处理技术研究进展[J] .云南化工,2020,47(11):17-19. [7] 江苏省生态环境厅,江苏省市场监督管理局.池塘养殖尾水排放标准: DB32/4043—2021[S] .南京:江苏省生态环境厅,2021. [8] 辽宁省市场监督管理局,辽宁省生态环境厅.海水养殖尾水排放标准: DB21/3907—2023[S] .沈阳:辽宁省生态环境厅,2023. [9] 山东省市场监督管理局,山东省生态环境厅.海水养殖尾水排放标准: DB37/4676—2023[S] .济南:山东省生态环境厅,2023. [10] 天津市生态环境局,天津市市场监督管理委员会.海水养殖尾水污染物排放标准:DB12/1288—2023[S] .天津:天津市生态环境局,2023. [11] 河北省生态环境厅,河北省市场监督管理局. 海水养殖尾水污染物排放标准:DB13/5879—2023[S] .石家庄:河北省生态环境厅,2023. [12] 上海市生态环境局,上海市市场监督管理局.水产养殖尾水排放标准:DB31/1405—2023[S] .上海:上海市生态环境局,2023. [13] 福建省市场监督管理局,福建省生态环境厅.水产养殖尾水排放标准:DB35/2160—2023[S] .福州:福建省生态环境厅,2023. [14] 广东省生态环境厅,广东省市场监督管理局.水产养殖尾水排放标准:DB44/2462—2024[S] .广州:广东省生态环境厅,2024. [15] 海南省市场监督管理局,海南省生态环境厅.水产养殖尾水排放标准:DB46/475—2023[S] .海口:海南省生态环境厅,2023. [16] 四川省生态环境厅,四川省市场监督管理局.四川省水产养殖业水污染物排放标准:DB51/3061—2023[S] .成都:四川省生态环境厅,2023. [17] 重庆市生态环境局,重庆市市场监督管理局.重庆养殖尾水排放标准:DB50/1544—2023[S] .重庆:重庆市生态环境局,2023. [18] KIM K, HUR J W, KIM S, et al. Biological wastewater treatment:comparison of heterotrophs (BFT) with autotrophs (ABFT) in aquaculture systems[J] . Bioresource Technology,2020,296:122293. [19] CRINI G, LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment[J] . Environmental Chemistry Letters,2019,17(1):145-155. [20] 翁波,尹艳飞,冉茂良,等.菌藻生物膜反应器处理养殖污水的应用[J] .中国畜牧业,2022(2):29-32. [21] 陈天兄,张日喜,刘建龙,等.水产养殖尾水处理模式及发展建议[J] .水产养殖,2023,44(5):64-67. [22] 陈小凤,黎玮欣,李敏倩,等.3种常见水产养殖尾水处理技术的研究进展[J] .水产科技情报,2023,50(3):194-200. [23] 黄振东.海水养殖尾水处理技术研究进展[J] .农业开发与装备,2023(2):103-105. [24] LI Z W, LIN L, LIU X, et al. Understanding the role of extracellular polymeric substances in the rheological properties of aerobic granular sludge[J] . Science of the Total Environment,2020,705:135948. [25] WANG H, HILL R T, ZHENG T L, et al. Effects of bacterial communities on biofuel-producing microalgae:stimulation, inhibition and harvesting[J] . Critical Reviews in Biotechnology,2016,36(2):341-352. [26] 廖怀玉,孙丽,李济斌,等.菌-藻共生生物膜污水处理研究进展[J] .土木与环境工程学报(中英文),2021,43(4):141-153. [27] 任舒天,邵蓬,王祎哲,等.水生环境中微藻与细菌相互作用机制及应用研究进展[J] .河北渔业,2019(12):50-53. [28] 孙丽.菌藻共生MBR系统碳氮磷强化去除及膜污染减缓机制[D] .哈尔滨:哈尔滨工业大学,2019. [29] ZHANG Y L, SU H Y, ZHONG Y N, et al. The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products[J] . Water Research,2012,46(17):5509-5516. [30] CROFT M T, LAWRENCE A D, RAUX-DEERY E, et al. Algae acquire vitamin B12 through a symbiotic relationship with bacteria[J] . Nature,2005,438(7064):90-93. [31] KAZAMIA E, CZESNICK H, NGUYEN T T V, et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation[J] . Environmental Microbiology,2012,14(6):1466-1476. [32] MENG F S, XI L M, LIU D F, et al. Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors[J] . Bioresource Technology,2019,272:473-481. [33] GONÇALVES A L, PIRES J C M, SIMÕES M. A review on the use of microalgal consortia for wastewater treatment[J] . Algal Research,2017,24:403-415. [34] HAN P, LU Q, FAN L L, et al. A review on the use of microalgae for sustainable aquaculture[J] . Applied Sciences,2019,9(11):2377. [35] 皮永蕊,吕永红,柳莹,等.微藻-细菌共生体系在废水处理中的应用[J] .微生物学报,2019,59(6):1188-1196. [36] 吴珈祺.藻菌共生系统处理污水的研究进展[J] .资源节约与环保,2018(11):89. [37] WANG M,KEELEY R, ZALIVINA N, et al. Advances in algal-prokaryotic wastewater treatment:a review of nitrogen transformations, reactor configurations and molecular tools[J] . Journal of Environmental Management,2018,217:845-857. [38] 王玉莹,支丽玲,马鑫欣,等.污水处理中的菌藻关系和污染物去除效能[J] .环境科学与技术,2019,42(7):116-125. [39] ORUGANTI R K, KATAM K, SHOW P L, et al. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal[J] . Bioengineered,2022,13(4):10412-10453. [40] 李亚丽,甄新,李春庚,等.藻菌共生系统处理污水的研究进展[J] .应用化工,2021,50(11):3181-3185. [41] LI S S, LI J H, XIA M S, et al. Adsorption of nitrogen and phosphorus by intact cells and cell wall polysaccharides of Microcystis[J] . Journal of Applied Phycology,2013,25(5):1539-1544. [42] 袁孝康,付绿倩,陈华林,等.水产养殖中抗生素污染治理研究进展[J] .环境监测管理与技术,2023,35(4):1-6. [43] DE GODOS I, MUÑOZ R, GUIEYSSE B. Tetracycline removal during wastewater treatment in high-rate algal ponds[J] . Journal of Hazardous Materials,2012,229/230:446-449. [44] DU Y X, WANG J, LI H T, et al. The dual function of the algal treatment:antibiotic elimination combined with CO2 fixation[J] . Chemosphere,2018,211:192-201. [45] ZHANG J W, FU D F, WU J L. Photodegradation of Norfloxacin in aqueous solution containing algae[J] . Journal of Environmental Sciences,2012,24(4):743-749. [46] CHENG X X, DELANKA-PEDIGE H M K, MUNASINGHE-ARACHCHIGE S P, et al. Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria:a comparative study[J] . The Science of the Total Environment,2020,711:134435. [47] TANG Y C, SONG L L, JI X Y, et al. Algal-bacterial consortium mediated system offers effective removal of nitrogen nutrients and antibiotic resistance genes[J] . Bioresource Technology,2022,362:127874. [48] WANG Y, GONG X Y, HUANG D Y, et al. Increasing oxytetracycline and enrofloxacin concentrations on the algal growth and sewage purification performance of an algal-bacterial consortia system[J] . Chemosphere,2022,286:131917. [49] TAŞKANE. Effect of tetracycline antibiotics on performance and microbial community of algal photo-bioreactor[J] . Applied Biochemistry and Biotechnology,2016,179(6):947-958. [50] BILAD M R, ARAFAT H A, VANKELECOM I F J. Membrane technology in microalgae cultivation and harvesting:a review[J] . Biotechnology Advances,2014,32(7):1283-1300. [51] 王荣昌,程霞,曾旭.污水处理中菌藻共生系统去除污染物机理及其应用进展[J] .环境科学学报,2018,38(1):13-22. [52] YANG J X, SHI W X, FANG F, et al. Exploring the feasibility of sewage treatment by algal-bacterial consortia[J] . Critical Reviews in Biotechnology,2020,40(2):169-179. [53] 何振平,王秀云,樊晓旭,等.温度和光照对塔胞藻生长的影响[J] .水产科学,2007,26(4):218-221. [54] 王培明.温度、盐度和光照度对菌-藻联合体系氮吸收的影响[D] .湛江:广东海洋大学,2020. [55] NISHI K,AKIZUKI S, TODA T, et al. Development of light-shielding hydrogel for nitrifying bacteria to prevent photoinhibition under strong light irradiation[J] . Process Biochemistry,2020,94:359-364. [56] ARUN S, RAMASAMY S, PAKSHIRAJAN K. Mechanistic insights into nitrification by microalgae-bacterial consortia in a photo-sequencing batch reactor under different light intensities[J] . Journal of Cleaner Production,2021,321:128752. [57] 陈涛静.菌藻共生与生物强化技术在废水处理中的应用及机理研究[D] .上海:上海大学,2017. [58] PARK K H, LEE C G. Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density[J] . Biotechnology and Bioprocess Engineering,2001,6(3):189-193. [59] 孙凡蛟,宋凤芝,范宇成.菌藻共生系统处理污水的影响因素及其研究进展[J] .农村实用技术,2019(8):90-92. [60] RAS M, STEYER J P, BERNARD O. Temperature effect on microalgae:a crucial factor for outdoor production[J] . Reviews in Environmental Science and Bio/Technology,2013,12(2):153-164. [61] 陈金计,殷高方,赵南京,等.光合抑制法水质毒性检测中藻类培养光照与温度实验分析[J] .大气与环境光学学报,2023,18(2):133-140. [62] 萧铭明,黄翔鹄,黄强,等.温度、照度和接种量对钝顶螺旋藻去除酒精废水氮和磷的影响[J] .广东海洋大学学报,2019,39(3):54-60. [63] KNOWLES G, DOWNING A L, BARRETT M J. Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer[J] . Journal of General Microbiology,1965,38:263-278. [64] 刘丽平,李赟,潘鲁青,等.海水小球藻-芽孢杆菌复合体系去除海水养殖中氮磷污染的研究[J] .中国海洋大学学报(自然科学版),2022,52(11):43-55. [65] HUANG Q S, JIANG F H, WANG L Z, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms[J] . Engineering,2017,3(3):318-329. [66] 屈宪昆.菌藻共生MBR对海水养殖废水处理效能及膜污染特性研究[D] .哈尔滨:哈尔滨工业大学,2022. [67] 张奇,曹英昆,邢泽宇,等.pH、盐度对小球藻生长量和溶氧量的影响[J] .湖北农业科学,2018,57(11):83-86. [68] 王淑莹,李论,李凌云,等.快速启动短程硝化过程起始pH值对亚硝酸盐积累的影响[J] .北京工业大学学报,2011,37(7):1067-1072. [69] 刘洋,梁沪莲,刘意康,等.低温海水硝化细菌富集培养过程及影响因素[J] .河北渔业,2017(12):1-5. [70] LIANG Z J, LIU Y, GE F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis[J] . Chemosphere,2013,92(10):1383-1389. [71] KESAANO M, SIMS R C. Algal biofilm based technology for wastewater treatment[J] . Algal Research, 2014,5:231-240. [72] 吴静.混合营养型藻类生物膜的特性及在富营养化水体脱氮除磷中的应用[D] .广州:华南理工大学,2019. [73] 程海华,朱建新,曲克明,等.不同有机碳源及C/N对生物滤池净化效果的影响[J] .渔业科学进展,2016,37(1):127-134. [74] 魏海娟,张永祥,蒋源,等.碳源对生物膜同步硝化反硝化脱氮影响[J] .北京工业大学学报,2010,36(4):506-510. [75] LAN S H, LAI Y S, WANG L Y, et al.Treatment of nitrate-nitrogen-containing wastewater via aerobic denitrifying bacteria using different carbon sources[J] . BioResources,2022,17(2):1972-1987. [76] 魏凡凯,王昕竹,吴鹏,等.碳源对厌氧氨氧化菌活性影响的研究进展[J] .工业水处理,2019,39(6):7-12. [77] 肖伟,毕永红,张波,等.碳源对藻、菌及其共培养系统水处理效果的影响[J] .水生态学杂志,2021,42(4):59-66. [78] WANG X Y, HONG Y. Microalgae biofilm and bacteria symbiosis in nutrient removal and carbon fixation from wastewater:a review[J] . Current Pollution Reports,2022,8(2):128-146. [79] RAMANAN R, KIM B H, CHO D H, et al. Algae-bacteria interactions:evolution, ecology and emerging applications[J] . Biotechnology Advances,2016,34(1):14-29. [80] QIAN J, WAN T, YE Y X, et al. Insight into the formation mechanism of algal biofilm in soy sauce wastewater[J] . Journal of Cleaner Production,2023,394:136179. [81] 张元长,范明坤,谢仰杰.混合培养对益生菌和小球藻生长的影响[J] .集美大学学报(自然科学版),2018,23(6):416-420. [82] UNNITHAN V V, UNC A, SMITH G B. Mini-review:a priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters[J] . Algal Research,2014,4:35-40. [83] WANG Y, HO S H, CHENG C L, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment[J] . Bioresource Technology, 2016,222:485-497. [84] GROSS M, JARBOE D, WEN Z Y. Biofilm-based algal cultivation systems[J] . Applied Microbiology and Biotechnology,2015,99(14):5781-5789. [85] ZHANG Q, WANG L, YU Z G, et al. Pine sawdust as algal biofilm biocarrier for wastewater treatment and algae-based byproducts production[J] . Journal of Cleaner Production,2020,256:120449. [86] 高凌鹏,刘志宏,李诗宣.固定化菌藻处理海水养殖废水试验研究[J] .工业用水与废水,2021,52(6):11-15. [87] LIU Y, LV J P, FENG J, et al. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae[J] . Journal of Chemical Technology & Biotechnology,2019,94(3):900-910. [88] WANG Y Y, WANG S Y, SUN L Q, et al. Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification[J] . Algal Research,2020,47:101840. [89] JI X Y, LI H M, ZHANG J B, et al. The collaborative effect of Chlorella vulgaris-Bacillus licheniformis consortia on the treatment of municipal water[J] . Journal of Hazardous Materials,2019,365:483-493. [90] ZHU L D, WANG Z M, SHU Q, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment[J] . Water Research,2013,47(13):4294-4302. [91] JI X Y, JIANG M Q, ZHANG J B, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater[J] . Bioresource Technology,2018,247:44-50. [92] DE-BASHAN L E, HERNANDEZ J P, MOREY T, et al. Microalgae growth-promoting bacteria as “helpers” for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater[J] . Water Research,2004,38(2):466-474. [93] CHEN T J, ZHAO Q Y, WANG L, et al. Comparative metabolomic analysis of the green microalga Chlorella sorokiniana cultivated in the single culture and a consortium with bacteria for wastewater remediation[J] . Applied Biochemistry and Biotechnology,2017,183(3):1062-1075. [94] PADDOCK M B, FERNÁNDEZ-BAYO J D, VANDERGHEYNST J S. The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production[J] . Applied Microbiology and Biotechnology,2020,104(2):893-905. [95] LI D, LIU R Q, CUI X Y, et al. Co-culture of bacteria and microalgae for treatment of high concentration biogas slurry[J] . Journal of Water Process Engineering,2021,41:102014. [96] RONG H W, LI Y Y, WANG J Y, et al. Towards advanced mariculture wastewater treatment by bacterial-algal symbiosis system with different bacteria and algae inoculation ratios[J] . Journal of Water Process Engineering,2023,53:103826. [97] PANDEY P K, LAXMI M S, KUMAR S. In vitro evaluation of natural and synthetic substrate for biofilm formation and their effect on water qualities[J] . Indian Journal of Animal Research,2014,48(6):585. [98] JOHNSON M B, WEN Z Y. Development of an attached microalgal growth system for biofuel production[J] . Applied Microbiology and Biotechnology,2010,85(3):525-534. [99] HAN W, MAO Y F, WEI Y P, et al. Bioremediation of aquaculture wastewater with algal-bacterial biofilm combined with the production of selenium rich biofertilizer[J] . Water,2020,12(7):2071. [100] 戚韩英,汪文斌,郑昱,等.生物膜形成机理及影响因素探究[J] .微生物学通报,2013,40(4):677-685. [101] 陈恒源,方叶子,郑华宝,等.菌藻生物膜反应器处理养猪废水机制研究[J] .生物学杂志,2024,41(4):65-70. [102] 方艺苓. 基于微生物群体感应的菌藻共生MBR污染物强化去除机制及膜污染控制研究[D] . 济南:济南大学,2023. [103] 章楚卓.固定化菌藻共生系统去除氮磷的效能研究及EPS在其过程的作用机制[D] .南昌:南昌大学,2023. [104] 程一蕾.菌藻共生-动态膜生物反应器处理生活污水的性能研究[D] .南昌:南昌大学,2023. [105] 王健.微藻-硝化菌群共生体系处理厌氧发酵液效能评估与机理探究[D] .合肥:安徽建筑大学,2023. [106] 朱镜儒.菌藻共生PSBBR系统处理海水养殖废水效能研究[D] .广州:广州大学,2023. [107] 张正红,何文辉,向天勇,等.菌藻共生序批式生物膜反应器处理猪场沼液[J] .水处理技术,2018,44(1):118-122. [108] TANG C C, TIAN Y, LIANG H, et al. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor[J] . Bioresource Technology,2018,250:185-190. [109] ZHANG Z S, GUO L, LIAO Q R, et al. Bacterial-algal coupling system for high strength mariculture wastewater treatment:effect of temperature on nutrient recovery and microalgae cultivation[J] . Bioresource Technology,2021,338:125574. [110] LANANAN F, ABDUL HAMID S H, DIN W N S, et al. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp. )[J] . International Biodeterioration & Biodegradation,2014,95:127-134. [111] RIAÑO B, MOLINUEVO B, GARCÍA-GONZÁLEZ M C. Treatment of fish processing wastewater with microalgae-containing microbiota[J] . Bioresource Technology,2011,102(23):10829-10833. [112] 沈南南,李纯厚,贾晓平,等.小球藻与芽孢杆菌对对虾养殖水质调控作用的研究[J] .海洋水产研究,2008,29(2):48-52. [113] 马瑞阳,葛成军,王珺,等.藻-菌单一及共生系统对海水养殖尾水的净化作用[J] .中国水产科学,2019,26(6):1126-1135. [114] 黄山.蛋白核小球藻-硝化微生物共培养及在对虾养殖水质净化中的应用[D] .青岛:青岛理工大学,2022. [115] 刘雨雪.藻菌生物膜处理水产养殖废水及其饲料化潜力研究[D] .武汉:华中科技大学,2021. [116] 匡彬,周丽琳,蔡传林,等.电活性菌藻膜耦合虹吸曝气技术处理海水养殖废水[J] .农业工程学报,2023,39(21):205-212. [117] 林梓杨,匡彬,倪智力,等.电活性菌藻生物膜强化人工湿地处理水产养殖废水的小试研究[J] .水处理技术,2023,49(2):122-127.