Analysis and Evaluation of Nutritional Composition and Heavy Metals Levels in Liver of Bluefin Leatherjack Thamnaconus septentrionalis
ZHANG Ziyang1,2, CHENG Yongxu1, KE Ling3, BIAN Li2, LI Fenghui2, CHANG Qing2, PAN Luying2, ZHU Jinchao2, WU Dan2, CHEN Siqing2
1. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 3. Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
Abstract:In order to rationally develop and utilize the nutritional value of liver, the nutritional content and several heavy metal contents in the liver of bluefin leatherjack Thamnaconus septentrionalis were analyzed by high-performance gas chromatography, high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The results showed that the liver of bluefin leatherjack contained moisture of 55.12%, crude protein of 5.09%, crude fat of 39.37%, and ash of 0.42%, with a total amino acid content of 3.748 g/100 g. There were essential amino acids of 43.22%, non-essential amino acids of 56.78%. The ratio of essential to non-essential amino acids was shown to be 0.76, meeting the criteria for high-quality protein according to the Food and Agriculture Organization of the United Nations and the World Health Organization standards. The flavor amino acid content of 44.02% was detected in the liver, with the maxial glutamic acid content among the amino acids, followed by aspartic acid. The essential amino acid score was high, with phenylalanine and isoleucine being the first and second limiting amino acids, respectively, indicating a reasonable amino acid composition. Twenty-eight fatty acids were detected, with a total content of 36.81 g/100 g, saturated fatty acids accounting for 29.570%, monounsaturated fatty acids accounting for 35.970%, and polyunsaturated fatty acids accounting for 34.460%. There was as high as 12.760% of content of eicosapentaenoic acid (EPA) and 17.990% of docosahexaenoic acid (DHA). The liver also contained vitamin A, D, and E, with respective contents of 434.03 mg/kg, 1.76 mg/kg, and 23.32 mg/kg. The levels of heavy metals, including lead, mercury, chromium, and cadmium, met the national food safety standards. In conclusion, the liver of bluefin leatherjack is a high-quality source of fish oil and nutritious and delicious fishery product.
[1] BIAN L, LI F H, GE J L, et al. Chromosome-level genome assembly of the greenfin horse-faced filefish (Thamnaconus septentrionalis) using Oxford Nanopore PromethION sequencing and Hi-C technology[J].Molecular Ecology Resources,2020,20(4):1069-1079. [2] 陈涛,李伟峰.野生绿鳍马面鲀(Navodon septentrionalis)幼鱼、成鱼肌肉营养成分分析[J].黑龙江畜牧兽医,2018(17):185-187. [3] 徐大凤,刘琨,王鹏飞,等.绿鳍马面鲀肌肉营养成分分析和营养评价[J].海洋科学,2018,42(5):122-129. [4] 姜良龙,张哲,王臻,等.绿鳍马面鲀工厂化早繁苗种培育关键技术[J].水产科学,2021,40(6):801-809. [5] 姚承祥.马面鲀的营养与利用[J].食品科学,1982,3(10):24-25. [6] 徐自勤.马面鲀鱼综合利用途径的探讨[J].水产科技情报,1983(1):7-9. [7] 柳啓沛.绿鳍马面鲀肝油毒性试验[C]//中国生理科学会第二届全国营养专业学术会议论文摘要汇编.成都,1979:146. [8] 普家勇.马面鱼的深加工工艺技术[J].渔业致富指南,2007(5):44-46. [9] YU Y H, GAINE G K, ZHOU L Y, et al. The classical and potential novel healthy functions of rice bran protein and its hydrolysates[J]. Critical Reviews in Food Science and Nutrition,2022,62(30):8454-8466. [10] 朱艳超,娄永江,熊国通,等.鮟鱇鱼鱼肝营养组成的分析及评价[J].食品工业科技,2017,38(5):356-360. [11] 侯钦帅,刘小芳,张学超,等.鲣鱼鱼肝营养成分分析与评价[J].青岛大学学报(自然科学版),2017,30(3):29-34. [12] 杨思静,刘小芳,刘建志,等.不同品种鲨鱼肝脂质组成特征分析[J].食品工业科技,2020,41(12):307-312. [13] 窦鑫.大黄鱼鱼肝油的酶法制取与脱腥研究[D].上海:上海海洋大学,2021. [14] 李兴艳,王炎,张瑞霞,等.基于统计学和营养学的三种藻粉蛋白质营养价值评价与方法分析[J].食品工业科技,2022,43(17):322-329. [15] 孙伟红,冷凯良,邢丽红,等.高效液相色谱串联质谱法同时测定大黄鱼肝和鲟鱼肝中的脂溶性维生素[J].分析试验室,2010,29(增刊):313-315. [16] 中华人民共和国卫生部,中国国家标准化管理委员会.鲜、冻动物性水产品卫生标准:GB 2733—2005[S].北京:中国标准出版社,2005. [17] 秦如江.马面鱼的食品加工及其废弃物利用概况[J].食品与发酵工业,1979,5(4):6-12. [18] 马方,杨宜婷,陈则华.不同类型n-3多不饱和脂肪酸对心血管疾病的防治作用及其机制研究进展[J].中国油脂,2018,43(2):65-69. [19] 樊燕,孙晨阳,王博,等.GC/MS分析俄罗斯鲟鱼不同部位脂肪酸组成[J].现代食品科技,2015,31(1):231-235. [20] LI J, JIAN Y Q, LIU R N, et al. Choline and fish oil can improve memory of mice through increasing brain DHA level[J]. Foods,2023,12(9):1799. [21] 陈彦婕,唐嘉诚,宫萱,等.鱼油提取、多不饱和脂肪酸富集及EPA和DHA的应用研究进展[J].食品与机械,2021,37(11):205-210. [22] 贾海先,邓陶陶,韩军花,等.建立中国n-3长链多不饱和脂肪酸预防慢性非传染性疾病营养素参考值的证据研究[J].卫生研究,2018,47(3):512-516. [23] DU J, YIN Q D, ZHOU X Z, et al. Distribution of extracellular amino acids and their potential functions in microbial cross-feeding in anaerobic digestion systems[J]. Bioresource Technology,2022,360:127535. [24] 刘胜男,王善宇,曹荣,等.不同规格玉筋鱼的营养分析与评价[J].渔业科学进展,2022,43(1):188-194. [25] 李金华,李博.全谷物膳食中我国4种杂粮的蛋白质营养综合评价[J].食品科技,2019,44(12):151-157. [26] 杨彩莉.超临界CO2提取金枪鱼鱼油的工艺与品质分析[D].湛江:广东海洋大学,2019. [27] TANUMIHARDJO S A. Vitamin A:biomarkers of nutrition for development[J]. The American Journal of Clinical Nutrition,2011,94(2):658S-665S. [28] QIN G W, NIU Z D, YU J D, et al. Soil heavy metal pollution and food safety in China:effects, sources and removing technology[J]. Chemosphere,2021,267:129205. [29] LIU H Q, LIU G J, WANG S S, et al. Distribution of heavy metals, stable isotope ratios (δ13C and δ15N) and risk assessment of fish from the Yellow River Estuary, China[J]. Chemosphere,2018,208:731-739. [30] WANG R, XIA W T, EGGLETON M A, et al. Spatial and temporal patterns of heavy metals and potential human impacts in Central Yangtze Lakes, China[J]. Science of the Total Environment,2022,820:153368. [31] VAROL M, SÜNBÜL M R. Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios[J]. Environmental Research,2020,184:109298. [32] ERSOY B, ÇELIK M. Essential elements and contaminants in tissues of commercial pelagic fish from the Eastern Mediterranean Sea[J]. Journal of the Science of Food and Agriculture,2009,89(9):1615-1621. [33] CALTA M, CANPOLAT O. The comparison of three cyprinid species in terms of heavy metals accumulation in some tissues[J]. Water Environment Research,2006,78(5):548-551.