Effects of Dietary Fresh Wolffia Wolffia globosa on Growth, Nutrition Quality and Intestinal Microbita of Common Carp Cyprinus carpio var. Quanzhounensis
WEN Luting1, DU Xuesong1, LI Zhe2, WU Xia1, HUANG Yin1, QIN Junqi1, HUANG Bo1, LI Min1, DENG Qian1, LIN Yong1, CHEN Zhong1
1. Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture,Key Laboratory of China (Guangxi)-ASEAN Aquatic Germplasm Resources Comprehensive Development and Utilization, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Science, Nanning 530021,China; 2. College of Fisheries, Hunan Agricultural University, Changsha 414000, China
Abstract:To investigate the effects of dietary fresh wolffia Wolffiaglobosa on the growth performance, nutritional composition, antioxidant capacity, gut microbiota structure, and digestive enzyme activity of common carp Cyprinus carpio var. Quanzhouensis, juvenile fish with body weight of (2.44±1.11) g was raised in a 6.55 m ×1.58 m×0.90 m aerated cement tank and fed 3% granular feed and 2% fresh wolffia daily at water temperature of (23.00±0.72) ℃ (experimental group), while in the control group the fish was fed 5% formulated feed per day for 12 weeks when the growth performance, nutritional composition, antioxidant capacity, intestinal microbiota structure, and digestive enzyme activity of the carp were measured.The results showed that there were very significant higher increase in body mass, specific growth rate, hepato-somatic index, and intestinal-somatic index in the common carp in the experimental group than those in the control group (P<0.01),without significant differences in condition factor, feed conversion ratio and gonado-somatic index between the two groups (P>0.05).The spleen-somatic index was significantly higher than those in the control group (P<0.05). Compared with the control group, the contents of crude protein and crude fat in the muscle of the common carp in the experimental group were increased significantly (P<0.01), while the contents of crude ash and cholesterol decreased significantly (P<0.01). The total antioxidant capacity of hepatopancreas(T-AOC) of the fish fed with fresh W.globosa were significantly higher than those of the control group (P<0.01). The W.globosa had no effect on the species diversity and abundance of intestinal microbiota of the common carp and the number of absolute dominant bacteria (P>0.05), but the relative abundance of enterococci positively related to crude fat and total antioxidant capacity were significantly increased ,while the relative abundance of campylobacter positively related to cholesterol and crude ash were significantly decreased, the functions of intestinal material degradation, metabolism, replication, repair and digestion were enhanced; while the activity of trypsin in foregut were increased (P<0.01). To sum up, all results suggest that dietary 2% fresh W. globosa can improve the degradation, metabolism and digestion functions of intestinal microbiota of the common carp, promote its trypsin activity and T-AOC, thereby improving its growth performance and the nutritional structure of muscle. W.globosa could be used as a high-quality biological feed for the fish fed in industrial and paddy field cultivation.
[1] ZIEGLER P, ADELMANN K, ZIMMER S, et al. Relative in vitro growth rates of duckweeds (Lemnaceae)–the most rapidly growing higher plants[J]. Plant Biology,2015,17(s1):33-41. [2] HASSAN M S, EDWARDS P. Evaluation of duckweed (Lemna perpusilla and Spirodela polyrrhiza) as feed for Nile tilapia (Oreochromis niloticus)[J]. Aquaculture,1992,104(3/4):315-326. [3] CULLEY D D Jr, REJMÁNKOVÁ E, KVĚT J, et al. Production, chemical quality and use of duckweeds (Lemnaceae) in aquaculture, waste management, and animal feeds[J]. Journal of the World Mariculture Society,2009,12(2):27-49. [4] APPENROTH K J, SREE K S, BOG M, et al. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food[J]. Frontiers in Chemistry,2018,6:483. [5] GOPAL S J, ASHOK K, DEEPAK S, et al. In vitro digestibility study of some plant protein sources as aquafeed for carps Labeo rohita and Cyprinus carpio using pH-Stat method[J]. Indian Journal of Experimental Biology,2016,54(9):606-611. [6] AZIM M E, WAHAB M A. Development of a duckweed-fed carp polyculture system in Bangladesh[J]. Aquaculture,2003,218(1/2/3/4):425-438. [7] UDDIN M N, RAHMAN M S, SHAHJAHAN M. Effects of duckweed (Lemna minor) as supplementary feed on monoculture of GIFT strain of tilapia (Oreochromis niloticus)[J]. Progressive Agriculture,2014,18(2):183-188. [8] 金万昆.淡水养殖鱼类种质资源库[M].北京:中国农业科学技术出版社,2011. [9] 刘建康,何碧梧.中国淡水鱼类养殖学[M].3版.北京:科学出版社,1992. [10] 全国水产技术推广总站 中国水产学会.“十三五”中国稻渔综合种养产业发展报告[N].中国渔业报,2021-12-20(2). [11] 农业农村部渔业渔政管理局、全国水产技术推广总站、中国水产学会.中国稻渔综合种养产业发展报告(2020)[J].中国水产,2020(10):12-19. [12] 刘某承,张丹,李文华.稻田养鱼与常规稻田耕作模式的综合效益比较研究——以浙江省青田县为例[J].中国生态农业学报,2010,18(1):164-169. [13] 徐跑.中国稻鱼综合种养的发展与展望[J].大连海洋大学学报,2021,36(5):717-726. [14] 耿彬,陈开健,刘祥,等.饲料中添加不同水平玉米干酒糟及其可溶物对斑点叉尾鮰生长、体色、肉色、血清生化指标及肠道菌群结构的影响[J].动物营养学报,2021,33(5):2864-2874. [15] 刘文骁.彩鲫与建鲤杂交F1代生物学特性研究[D].石河子:石河子大学,2015. [16] GUO M J, WU F H, HAO G G,et al. Bacillus subtilis improves immunity and disease resistance in rabbits[J]. Frontiers in Immunology,2017,8:354. [17] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996-998. [18] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics,2011,27(16):2194-2200. [19] PRUESSE E, QUAST C, KNITTEL K, et al. SILVA:a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB[J]. Nucleic Acids Research,2007,35(21):7188-7196. [20] NILSSON R H, LARSSON K H, TAYLOR A F, et al. The UNITE database for molecular identification of fungi:handling dark taxa and parallel taxonomic classifications[J]. Nucleic Acids Research,2019,47(D1):D259-D264. [21] ANKENBRAND M J, KELLER A, WOLF M, et al. ITS2 database Ⅴ:twice as much[J]. Molecular Biology and Evolution,2015,32(11):3030-3032. [22] WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,2007,73(16):5261-5267. [23] WICKHAM H. ggplot2[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2011, 3(2): 180-185. [24] CHEN H B, BOUTROS P C. VennDiagram:a package for the generation of highly-customizable Venn and Euler diagrams in R[J]. BMC Bioinformatics, 2011,12(1):1-7. [25] CONWAY J R, LEX A, GEHLENBORG N. UpSetR:an R package for the visualization of intersecting sets and their properties[J]. Bioinformatics,2017,33(18):2938-2940. [26] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods,2010,7(5):335-336. [27] LANGILLE M G I, ZANEVELD J, CAPORASO J G,et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology,2013,31(9):814-821. [28] OKSANEN J, BLANCHET F G, KINDT R, et al. Vegan: community ecology package. R package version 2.5-3[EB/OL].(2018)[2023-04-01]http://CRAN.R-project.org/package=vegan,2018. [29] REVELLE W, REVELLE M W. Package ‘psych’ [J]. The comprehensive R archive network, 2015, 337-338. [30] 周安国,陈代文. 动物营养学[M]. 3版.北京:中国农业出版社,2011. [31] PRADHAN A, PATEL A B, SINGH S K. Evaluation of live duckweed, Wolffia globosa as an allochthonous feed for Labeo rohita fry during nursery rearing[J]. Aquaculture Research,2019,50(6):1557-1563. [32] 黄斌,黄勇,汪利.日粮添加芜萍对红色草金鱼生长及体色的影响[J].水产科学,2011,30(10):617-620. [33] 李二超,陈立侨,顾顺樟,等.水产饲料蛋白源营养价值的评价方法[J].海洋科学,2009,33(7):113-117. [34] 刘婷,黄凯,林勇,等.禾花鲤摄食选择与仔稚鱼消化器官发育的研究[J].水产科学,2021,40(6):826-834. [35] 佚名.最小的花卉植物[J].军事文摘,2016(2):23. [36] HU Z B, FANG Y, YI Z L, et al. Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions[J]. LWT,2022,153:112477. [37] 李晋南,王常安,张圆圆,等.高淀粉水平下精氨酸对松浦镜鲤肠道形态与功能的影响[J].广东海洋大学学报,2021,41(1):39-46. [38] FURNÉ M, HIDALGO M C, LÓPEZ A, et al. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study[J]. Aquaculture,2005,250(1/2):391-398. [39] 刘飞,张轩杰,刘少军,等.湘云鲫、湘云鲤消化道的组织学研究[J].中国水产科学,2001,8(2):23-27. [40] SZABÓ E, BÖCSKEI Z, NÁRAY-SZABÓ G, et al. The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the protease[J]. European Journal of Biochemistry,1999,263(1):20-26. [41] 黄瑾,熊邦喜,陈洁,等.鱼类消化酶活性及其影响因素的研究进展[J].湖南农业科学,2011(5):129-131. [42] CHEN G F, FENG L, KUANG S Y, et al. Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. British Journal of Nutrition,2012,108(2):195-207. [43] ZHOU F, ZHOU J, SHAO Q J, et al. Effects of arginine-deficient and replete diets on growth performance, digestive enzyme activities and genes expression of black sea bream, Acanthopagrus schlegelii, juveniles[J]. Journal of the World Aquaculture Society,2012,43(6):828-839. [44] 王连生,吴俊光,徐奇友,等.饲料中精氨酸水平对杂交鲟幼鱼肠道消化酶活性及形态结构的影响[J].大连海洋大学学报,2017,32(1):51-55. [45] 高露姣,楼宝,毛国民,等.不同饵料饲养的褐牙鲆肌肉营养成分的比较[J].海洋渔业,2009,31(3):293-299. [46] 罗莉,叶元土,林仕梅,等.日粮必需氨基酸模式对草鱼生长及蛋白质周转的影响[J].水生生物学报,2003,27(3):278-282. [47] 李新波,蔡发国,邓岳松.浮萍饲用价值研究进展[J].饲料研究,2011(10):3-6. [48] 汪婷,黄凯,孙琳琳,等.禾花鲤肌肉营养成分分析与安全性评价[J].南方农业学报,2019,50(7):1579-1586. [49] 杨四秀,蒋艾青.禾花鲤含肉率与肌肉营养成分分析[J].水生态学杂志,2009,2(2):154-157. [50] APPENROTH K J, SREE K S, BÖHM V, et al. Nutritional value of duckweeds (Lemnaceae) as human food[J]. Food Chemistry,2017,217:266-273. [51] LUTHRIA D L, LU Y J, MARIA JOHN K M. Bioactive phytochemicals in wheat:extraction, analysis, processing, and functional properties[J]. Journal of Functional Foods,2015,18:910-925. [52] 徐晓丽,孙迎,丁燕,等.胆固醇对骨代谢影响的研究进展[J].中国骨质疏松杂志,2021,27(6):895-900. [53] 王微微,高丽丽,王小敏,等.肠道菌群与草鱼个体大小相关性研究[J].安徽农业科学,2017,45(33):153-157,162. [54] WANG J, HUANG Y J, XU K H, et al. White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2019,84:130-137. [55] SHUI Y, GUAN Z B, LIU G F, et al. Gut microbiota of red swamp crayfish Procambarus clarkii in integrated crayfish-rice cultivation model[J]. AMB Express, 2020, 10(1):5. [56] 吴勋.高豆粕饲料中添加三甘油丁酸酯对黄姑鱼幼鱼生长、体成分和肠道健康的影响[D].舟山:浙江海洋大学,2019. [57] 钟雷,吉红,王毅.饲料拌喂微生态制剂对建鲤生长性能、体成分和肠道菌群的影响[J].饲料研究,2015(2):45-49. [58] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology,2015,186:163-172. [59] GAO S, PAN L Q, HUANG F, et al. Metagenomic insights into the structure and function of intestinal microbiota of the farmed Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture,2019,499:109-118. [60] LIU Q, LONG Y N, LI B, et al. Rice-shrimp culture:a better intestinal microbiota, immune enzymatic activities, and muscle relish of crayfish (Procambarus clarkii) in Sichuan Province[J]. Applied Microbiology and Biotechnology,2020,104(21):9413-9420. [61] HUGHES S E, MARION J W. Cyanobacteria growth in nitrogen- & phosphorus-spiked water from a hypereutrophic reservoir in Kentucky, USA[J]. Journal of Environmental Protection,2021,12(2):75-89. [62] FUJITA M, MORI K, KODERA T. Nutrient removal and starch production through cultivation of Wolffia arrhiza[J]. Journal of Bioscience and Bioengineering,1999,87(2):194-198. [63] MCKEE L S, LA ROSA S L, WESTERENG B, et al. Polysaccharide degradation by the Bacteroidetes:mechanisms and nomenclature[J]. Environmental Microbiology Reports,2021,13(5):559-581. [64] ARNOSTI C, WIETZ M, BRINKHOFF T, et al. The biogeochemistry of marine polysaccharides:sources, inventories, and bacterial drivers of the carbohydrate cycle[J]. Annual Review of Marine Science,2021,13:81-108. [65] LAPÉBIE P, LOMBARD V, DRULA E, et al. Bacteroidetes use thousands of enzyme combinations to break down glycans[J]. Nature Communications,2019,10(1):1-7. [66] COSTANTINI L, MOLINARI R, FARINON B, et al. Impact of Omega-3 fatty acids on the gut microbiota[J]. International Journal of Molecular Sciences,2017,18(12):2645. [67] GHANBARI M, KNEIFEL W, DOMIG K J. A new view of the fish gut microbiome:advances from next-generation sequencing[J]. Aquaculture,2015,448:464-475. [68] SIMOPOULOS A P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation:nutritional implications for chronic diseases[J]. Biomedicine & Pharmacotherapy,2006,60(9):502-507. [69] 王宏玉,裴雪莹,王涛,等.杂交黄颡鱼黄优1号体质量和内脏指标的相关分析[J].江苏农业科学,2020,48(2):170-176. [70] KRAMER D L, BRYANT M J. Intestine length in the fishes of a tropical stream:2. Relationships to diet—the long and short of a convoluted issue[J]. Environmental Biology of Fishes,1995,42(2):129-141. [71] ZHANG Y L, SONG L, LIU R P, et al. Effects of dietary protein and lipid levels on growth, body composition and flesh quality of juvenile topmouth culter, Culter alburnus Basilewsky[J]. Aquaculture Research,2016,47(8):2633-2641. [72] DÖRR A J M, ABETE M C, PREARO M, et al. Effects of selenium supplemented diets on growth and condition indexes in juvenile red swamp crayfish, Procambarus clarkii[J]. Environmental Toxicology and Pharmacology,2013,36(2):484-492. [73] WU X, CHANG G, CHENG Y, et al. Effects of dietary phospholipid and highly unsaturated fatty acid on the gonadal development, tissue proximate composition, lipid class and fatty acid composition of precocious Chinese mitten crab, Eriocheir sinensis[J]. Aquaculture Nutrition,2010,16(1):25-36.