Changes in Calcium Content, Histological Structure and Expression of Calreticulin Gene of Chinese Mitten Crab Eriocheir sinensis during Molting Cycle
YANG Hang, YANG Zhigang, ZHANG Long
1. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; 2. Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN), Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; 3. National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:In this study, calcium ion contents in hepatopancreas and gill of Chinese mitten crab Eriocheir sinensis with average body weight of (5.63±2.35) g were determined during molting cycle including the molting stage (within 0.5 h after the old shell molting) and the late molting stage (0.5 h after the old shell molting until the new shell was incompletely hardened) by biochemical analysis. The structure changes in hepatopancreas and gill were histologically observed during the molting cycle by paraffin section and HE staining, and the expression of calreticulin (CRT) gene was analyzed in hepatopancreas and gill by fluorescence quantitative PCR. The results showed that there was higher calcium content in hepatopancreas in the postmolt, while lower in gill during the ecdysis and postmolt. The histological observation showed that the cell contents in hepatopancreas were changed obviously during the molting cycle. In the gill, the cavity structure of marginal vessel was not recovered at the edge of the gill lamellae. The fluorescence quantitative analysis showed that the expression levels of calreticulin gene was decreased in hepatopancreas and gill from the intermolt to premolt (minimum) and increased from the premolt to postmolt. In the ecdysis, the minimal expression level was observed in the hepatopancreas and gill, which provided a theoretical basis for the study of molting and calcium transport of Chinese mitten crab.
杨航, 杨志刚, 张龙. 蜕壳周期内中华绒螯蟹钙含量、组织结构及相关基因表达变化[J]. 水产科学, 2022, 41(1): 116-121.
YANG Hang, YANG Zhigang, ZHANG Long. Changes in Calcium Content, Histological Structure and Expression of Calreticulin Gene of Chinese Mitten Crab Eriocheir sinensis during Molting Cycle. Fisheries Science, 2022, 41(1): 116-121.
[1]张列士,陆锦天.中华绒螯蟹(Eriocheir sinensis)蜕壳和生长的研究进展[J].水产科技情报,2001,28(6):246-250. [2]何杰.中华绒螯蟹池塘生态养殖群体生长特征研究[J].水利渔业,2005,25(6):10-11. [3]张庆阳,马旭洲,王昂,等.稻田网箱养殖辽河水系中华绒螯蟹幼蟹的个体生长[J].动物学杂志,2015,50(1):112-121. [4]彭爱民.河蟹蜕壳期死亡原因的初步分析[J].淡水渔业,1994,24(4):34-35. [5]田志环,焦传珍.甲壳动物蜕皮诱导的肌肉萎缩与生长[J].水产科学,2016,35(5):603-606. [6]徐建荣,沈颂东,张加梅,等.环境条件对中华绒螯蟹大眼幼体蜕壳生长的影响[J].水产科学,2006,25(10):505-508. [7]田志环,康现江,焦传珍.中华绒螯蟹蜕皮过程中体壁结构和主要成分的变化[J].水生生物学报,2013,37(5):899-904. [8]王顺昌,魏亦军,申德林.中华绒螯蟹蜕皮过程中肌肉、肝胰脏和甲壳中钙和磷含量的变动[J].水产学报,2003,27(3):219-224. [9]WHEATLY M G, ZANOTTO F P, HUBBARD M G. Calcium homeostasis in crustaceans:subcellular Ca dynamics[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2002,132(1):163-178. [10]WHEATLY M G, HUBBARD M G, CORBETT A M. Physiological characterization of the Na+/Ca2+ exchanger(NCX)in hepatopancreatic and antennal gland basolateral membrane vesicles isolated from the freshwater crayfish Procambarus clarkii[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2002,131(2):343-361. [11]姚桂桂,吴旭干,成永旭,等.东海三疣梭子蟹雌体不同生理阶段肝胰腺的生化组成与其组织学结构的关系[J].海洋学报(中文版),2008,30(6):122-131. [12]CORRÊA J D, FARINA M, ALLODI S. Cytoarchitectural features of Ucides cordatus (Crustacea Decapoda) hepatopancreas:structure and elemental composition of electron-dense granules[J].Tissue & Cell,2002,34(5):315-325. [13]周金华.补钙在养殖池塘和河蟹养殖过程中作用[J].水产养殖,2011,32(6):52. [14]康现江,田志环,吴江立,等.中华绒螯蟹蜕皮周期及蜕皮过程中肝胰腺消化酶活性的变化[J].中国水产科学,2012,19(5):806-812. [15]田志环,康现江,焦传珍.中华绒螯蟹蜕皮周期中肝胰腺细胞组成的变化[J].中国水产科学,2013,20(6):1175-1181. [16]AHEARN G A, MANDAL P K, MANDAL A. Calcium regulation in crustaceans during the molt cycle:a review and update[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2004,137(2):247-257. [17]TORRES G, CHARMANTIER-DAURES M, CHIFFLET S, et al. Effects of long-term exposure to different salinities on the location and activity of Na+-K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis[J].Comparative Biochemistry and Physiology.Part A, Molecular & Integrative Physiology,2007,147(2):460-465. [18]佟蕊,成永旭,吴旭干,等.3种不同栖息环境下蟹鳃的超微结构、脂类组成及含量的比较[J].水产学报,2011,35(9):1426-1435. [19]FREIRE C A, ONKEN H, MCNAMARA J C. A structure-function analysis of ion transport in crustacean gills and excretory organs[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2008,151(3):272-304. [20]FARRELLY C A, GREENAWAY P. Morphology and ultrastructure of the gills of terrestrial crabs (Crustacea, Gecarcinidae and Grapsidae): adaptations for air-breathing[J].Zoomorphology,1992,112(1):39-49. [21]ROMANO N, ZENG C S. Survival, osmoregulation and ammonia-N excretion of blue swimmer crab, Portunus pelagicus, juveniles exposed to different ammonia-N and salinity combinations[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2010,151(2):222-228. [22]张超.中华绒螯蟹幼蟹蜕壳与生长的初步研究[J].水利渔业,2007,27(2):58-60. [23]顾志峰,王文,杜开和,等.中华绒螯蟹鳃的组织及超微结构[J].湖泊科学,2000,12(2):182-184. [24]蒲红双,高祥刚,侯红漫,等.甲壳动物蜕皮相关基因的研究进展[J].水产科学,2015,34(6):391-398. [25]JOHNSON S, MICHALAK M, OPAS M, et al. The ins and outs of calreticulin:from the ER lumen to the extracellular space[J].Trends in Cell Biology,2001,11(3):122-129. [26]MICHALAK M, ROBERT PARKER J M, OPAS M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum[J].Cell Calcium,2002,32(5/6):269-278. [27]郁二蒙,吕池波,谢骏,等.钙网蛋白在水产动物中的应用研究[J].生物技术通报,2012(8):34-39. [28]XU B P, LONG C, DONG W R, et al. Molecular characterization of calreticulin gene in mud crab Scylla paramamosain (Estampador): implications for the regulation of calcium homeostasis during moult cycle[J].Aquaculture Research,2016,47(10):3276-3286.