Effect of Cu2+ on Antioxidant Capacity of Red Shell Color Breeding Line and Natural Population of Hard Clam Meretrix meretrix
TIAN Zhen1,2, ZHANG Zhidong1, CHEN Aihua1, WU Yangping1, CHEN Suhua1, ZHANG Yu1, CAO Yi1, LI Qiujie1,2
1. Jiangsu Institute of Marine Fisheries, Nantong 226007, China; 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:Cu2+ as one of the main pollutants of heavy metal pollution in the ocean is characterized by wide source, easy residue, and easy enrichment of food chain, which constitutes a potential ecological crisis and economic crisis for the cultivation of marine shellfish. In order to understand the tolerance of natural populations Meretrix meretrix and red shell color breeding lines of hard cham to different concentrations of Cu2+, the effects of different concentrations of Cu2+ on the activities of superoxide dismutase (SOD) and catalase (CAT) and the relative expression of Cu/Zn-SOD gene in hard clam were studied. The results showed: (1) at the same concentration of Cu2+, the survival rate of red shell color breeding line hard clam was found to be slightly higher than that of natural population, without significant difference (P>0.05). (2) The changes in SOD and CAT enzyme activities of hard clam under different concentrations of Cu2+ showed the corresponding time effect relationship and concentration effect relationship, and the SOD enzyme activity of hard clam showed a linear upward trend, while CAT activity showed a first trend, with significant difference between red shell color breeding line and natural population (P<0.05). (3) The expression of Cu/Zn-SOD gene was consistent with the expression of SOD enzyme activity. With the linear expression of Cu2+ concentration, the maximal relative expression of gene was observed at Cu2+ concentration of 0.4 mg/L. (4) The antioxidant activity of red shell color breeding line hard clam was better than that of natural population. The purpose of this study is to lay a theoretical foundation for the selection of stress resistance and the development of new species of hard clam.
田镇, 张志东, 陈爱华, 吴杨平, 陈素华, 张雨, 曹奕, 李秋洁. Cu2+对文蛤红壳色选育系及自然群体抗氧化能力的影响[J]. 水产科学, 2022, 41(1): 62-68.
TIAN Zhen, ZHANG Zhidong, CHEN Aihua, WU Yangping, CHEN Suhua, ZHANG Yu, CAO Yi, LI Qiujie. Effect of Cu2+ on Antioxidant Capacity of Red Shell Color Breeding Line and Natural Population of Hard Clam Meretrix meretrix. Fisheries Science, 2022, 41(1): 62-68.
[1]孔令锋,王晓璇,松隈明彦,等.中国沿海文蛤属分类研究进展[J].中国海洋大学学报(自然科学版),2017,47(9):30-35. [2]张安国,李太武,苏秀榕,等.文蛤养殖现状及展望[J].水产科学,2005,24(2):31-33. [3]NAKAYAMA S M M, IKENAKA Y, MUZANDU K, et al. Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia[J].Archives of Environmental Contamination and Toxicology,2010,59(2):291-300. [4]KUMAR K A, ACHYUTHAN H. Heavy metal accumulation in certain marine animals along the East Coast of Chennai, Tamil Nadu, India[J].Journal of Environmental Biology,2007,28(3):637-643. [5]李磊,王云龙,沈新强,等.文蛤养殖水体中重金属Cu的安全限量值研究[J].生态毒理学报,2012,7(2):182-188. [6]BLACKMORE G, WANG W X. Uptake and efflux of Cd and Zn by the green mussel Perna viridis after metal preexposure[J].Environmental Science & Technology,2002,36(5):989-995. [7]SELVIN J, PRIYA S S, KIRAN G S, et al. Sponge-associated marine bacteria as indicators of heavy metal pollution[J].Microbiological Research,2009,164(3):352-363. [8]樊甄姣,杨爱国,刘志鸿,等.pH对栉孔扇贝体内几种免疫因子的影响[J].中国水产科学,2006,13(4):650-654. [9]张益奎.Cu2+胁迫对文蛤鳃组织SOD活性及MDA含量的影响[J]. 化工设计通讯,2019,45(9):167-168. [10]梁健,雷雅雲,李永仁,等. Cu2+对青蛤的胁迫效应[J].海洋科学,2015,39(11):74-78. [11]VOSLOO A, LAAS A, VOSLOO D, et al. Differential responses of juvenile and adult South African abalone (Haliotis midae Linnaeus) to low and high oxygen levels [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2013,164(1):192-199. [12]杜晓东,邓岳文,王庆恒,等. 马氏珠母贝“海选1号”[J]. 中国水产,2015(10):53-56. [13]王昊盛,宋鑫金,董文强,等.厚壳贻贝(Mytilus coruscus)金属硫蛋白MT-10:cDNA克隆、结构分析及铜离子胁迫下的表达[J].海洋与湖沼,2017,48(4):864-869. [14]STEBBING A R D. Hormesis—the stimulation of growth by low levels of inhibitors[J].Science of the Total Environment,1982,22(3):213-234. [15]陈志鑫.Hg2+、Pb2+、Cd2+对中华哲水蚤(Calanus sinicus)总超氧化物歧化酶(T-SOD)及线粒体COⅠ基因影响的初步研究[D].青岛:中国海洋大学,2010. [16]赵亚玲,蔺翠翠. 镉对河蟹抗氧化酶活性的影响[J]. 新农业,2019(11):13-15. [17]王凡,赵元凤,吕景才,等.铜污染对扇贝内脏团抗氧化酶活性的影响[J].水产科学,2008,27(12):622-624. [18]张少娜,孙耀,宋云利,等.紫贻贝(Mytilus edulis)对4种重金属的生物富集动力学特性研究[J].海洋与湖沼,2004,35(5):438-445. [19]张丽岩,宋欣,高玮玮,等.Cd2+对青蛤(Cyclina sinensis)的毒性及蓄积过程研究[J].海洋与湖沼,2010,41(3):418-421. [20]李艳红.温度和铜离子对近江牡蛎抗氧化物酶活力及相关基因表达的影响[D].湛江:广东海洋大学,2013. [21]江天久,牛涛.重金属Cu2+,Pb2+和Zn2+胁迫对近江牡蛎(Crassostrea rivularis) SOD活性影响研究[J].生态环境,2006,15(2):289-294. [22]姜冰,鲍相渤,张明,等. 虾夷扇贝铜锌超氧化物歧化酶基因的克隆与转录表达特性分析[J]. 生物技术通报,2011(12):150-156. [23]赵艳芳,吴继法,翟毓秀,等. 镉胁迫对不同镉富集能力海水养殖贝类抗氧化能力的影响——以扇贝和菲律宾蛤仔为例[J]. 生态毒理学报,2014,9(2):224-232. [24]刘海芳,王凡.重金属对水产动物污染的生物标志物的研究进展[J].水产科学,2009,28(5):299-302. [25]任虹,李强,李婷.重金属污染物对文蛤金属酶类的影响[J].中国渔业质量与标准,2014,4(4):7-12. [26]王清.几种重金属和有机污染物对文蛤Meretrxi meretrix生态毒理效应的研究[D].青岛:中国科学院研究生院(海洋研究所),2010. [27]郑嫩珠,章琳俐,李丽,等.半番鸭不同组织Cu/Zn-SOD基因表达及酶活性研究[J].福建农业学报,2019,34(8):933-938. [28]包永波. 海湾扇贝超氧化物歧化酶家族基因结构、表达和多态性分析[D].青岛:中国科学院研究生院(海洋研究所),2009. [29]王新生.褶纹冠蚌超氧化物歧化酶基因和溶菌酶基因的分子克隆及表达特征[D].南昌:南昌大学,2008. [30]赵劲松, 童成成, 周佳维,等. 湖北钉螺与中华圆田螺体内酚氧化酶活力比较[J].中国血吸虫病防治杂志,2019,31(2):169-170,181. [31]詹艳玲,董迎辉,何琳,等.文蛤粪卟啉原Ⅲ氧化酶基因克隆及与壳色性状的相关性分析[J].水产学报,2017,41(7):1054-1063.