周寅鑫, 刘海波, 胡伟, 任效忠, 李猛. 鱼类趋流性在循环水养殖系统中的应用与展望[J]. 水产科学, 2024, 43(5): 822-832.
ZHOU Yinxin, LIU Haibo, HU Wei, REN Xiaozhong, LI Meng. A Review: Application and Prospect of Fish Rheotaxis in a Recirculating Aquaculture System. Fisheries Science, 2024, 43(5): 822-832.
[1] 张宁.草、鲢幼鱼在“光-水流”混合环境中的综合趋性特征研究及其应用初探[D].宜昌:三峡大学,2020. [2] 车宗龙,任效忠,张倩.循环水养殖系统中水动力特性及其与鱼类相互影响研究进展[J].大连海洋大学学报,2021,36(5):886-898. [3] 祝楠.刺参循环水养殖系统(RAS)的设计与试验研究[D].哈尔滨:哈尔滨工业大学,2016. [4] 张婧一,陈有光,宿金莲,等.工厂化循环水与静水养鱼模式综合效益分析[J].渔业现代化,2009,36(1):5-8. [5] MARTINS C I M, EDING E H, VERDEGEM M C J, et al. New developments in recirculating aquaculture systems in Europe:a perspective on environmental sustainability[J]. Aquacultural Engineering,2010,43(3):83-93. [6] JIANG Y X, TORRANCE L, PEICHEL C L, et al. Differences in rheotactic responses contribute to divergent habitat use between parapatric lake and stream threespine stickleback[J]. Evolution,2015,69(9):2517-2524. [7] FEBRINA R. Modeling rheotaxis based on preference to predict fish migration behavior in a river[J]. Media Komunikasi Teknik Sipil, 2016,22(1):23. [8] CAI L, KATOPODIS C, JOHNSON D, et al. Case study:targeting species and applying swimming performance data to fish lift design for the Huangdeng Dam on the upper Mekong River[J]. Ecological Engineering,2018,122:32-38. [9] 仲召源.泾河、红河流域典型鱼类各游泳能力指标的相关性研究[D].宜昌:三峡大学,2020. [10] 李志敏.鱼道水流速度障碍下鱼类克流能力研究[D].宜昌:三峡大学,2019. [11] 刘慧杰,王从锋,朱良康,等.鲢鳙幼鱼临界游泳速度的比较研究[J].水生态学杂志,2016,37(4):63-69. [12] 张硕,陈勇.黑鲪幼鱼趋流性的初步研究[J].上海水产大学学报,2005,14(3):3282-3287. [13] 陈橙,闫慧,张挺,等.日本鳗鲡游泳能力和游泳行为研究[J].水生态学杂志,2022,43(4):127-132. [14] 蔡露,王伟营,王海龙,等.鱼感应流速对体长的响应及在过鱼设施流速设计中的应用[J].农业工程学报,2018,34(2):176-181. [15] 王博,石小涛,周琛琳,等.北盘江两种鱼感应流速[J].北华大学学报(自然科学版),2013,14(2):223-226. [16] 苏仟根,宋波澜,刘良国,等.沅水光泽黄颡鱼和大眼鳜的感应流速和喜好流速比较[J].水产学杂志,2021,34(6):53-58. [17] 李阳希,侯轶群,陶江平,等.大渡河下游3种鱼感应流速比较[J].生态学杂志,2021,40(10):3214-3220. [18] 王晓臣,吕彬彬,邢娟娟,等.黄河上游2种裂腹鱼感应流速及其与体长的关系[J].南方水产科学,2020,16(4):47-53. [19] 王晓臣,邢娟娟.5种鱼感应流速比较分析[J].水生态学杂志,2018,39(2):77-81. [20] 白艳勤,路波,罗佳,等.草鱼、鲢和瓦氏黄颡鱼幼鱼感应流速的比较[J].生态学杂志,2013,32(8):2085-2089. [21] 陈振武.典型鱼类游泳特性试验研究[D].郑州:华北水利水电大学,2021. [22] 吴青怡,曾令清,曹振东,等.鲤科鱼类的流速选择及其与食性的关系[J].水产学报,2015,39(12):1807-1816. [23] HOCKLEY F A, WILSON C A M E, BREW A, et al. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load[J]. Journal of the Royal Society Interface,2013,11(91):20130814. [24] YIN L M, CHEN L, WANG M L, et al. An acute increase in water temperature can decrease the swimming performance and energy utilization efficiency in rainbow trout (Oncorhynchus mykiss)[J]. Fish Physiology and Biochemistry,2021,47(1):109-120. [25] GUO C Y, ITO S I, WEGNER N C, et al. Metabolic measurements and parameter estimations for bioenergetics modelling of Pacific chub mackerel Scomber japonicus[J]. Fisheries Oceanography,2020,29(3):215-226. [26] PALSTRA A, VAN GINNEKEN V, VAN DEN THILLART G. Cost of transport and optimal swimming speed in farmed and wild European silver eels (Anguilla anguilla)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2008,151(1):37-44. [27] WARE D M. Growth, metabolism, and optimal swimming speed of a pelagic fish[J]. Journal of the Fisheries Research Board of Canada,1975,32(1):33-41. [28] BRETT J R. The respiratory metabolism and swimming performance of young sockeye salmon[J]. Journal of the Fisheries Research Board of Canada,1964,21(5):1183-1226. [29] 倪欢.多级助溯式鱼道模型及过鱼效率试验研究[D].淮南:安徽理工大学,2019. [30] CAI L,CHEN J H, JOHNSON D, et al. Effect of body length on swimming capability and vertical slot fishway design[J]. Global Ecology and Conservation,2020,22:e00990. [31] 龚丽,吴一红,白音包力皋,等.草鱼幼鱼游泳能力及游泳行为试验研究[J].中国水利水电科学研究院学报,2015,13(3):211-216. [32] 蔡露,CHRISTOS K,金瑶,等.中国鲤科鱼类游泳能力综合分析和应用[J].湖泊科学,2022,34(6):1788-1801. [33] HOOVER J J, ZIELINSKI D P, SORENSEN P W. Swimming performance of adult bighead carp Hypophthalmichthys nobilis(Richardson,1845) and silver carp H. molitrix(Valenciennes,1844)[J]. Journal of Applied Ichthyology,2017,33(1):54-62. [34] KE S F, LI Z M, JIANG Z W, et al. Effect of a vertical half cylinder on swimming of silver carp, Hypophthalmichthys molitrix:implications for microhabitat restoration and fishway design[J]. River Research and Applications,2019,35(4):436-441. [35] 崔闻达.红鳍东方鲀游泳能力研究[D].大连:大连海洋大学,2017. [36] BEDDOW T A, MCKINLEY R S. Effects of thermal environment on electromyographical signals obtained from Atlantic salmon (Salmo salar L. ) during forced swimming[J]. Hydrobiologia, 1998,371:225-232. [37] PANG X, YUAN X Z, CAO Z D, et al. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis)[J]. Journal of Comparative Physiology B,2013,183(1):99-108. [38] 何大仁,蔡厚才.鱼类行为学[M].厦门:厦门大学出版社,1998. [39] LYON E P. On rheotropism. Ⅰ:rheotropism in fishes[J]. American Journal of Physiology-Legacy Content,1904,12(2):149-161. [40] ORGER M B, BAIER H. Channeling of red and green cone inputs to the zebrafish optomotor response[J]. Visual Neuroscience,2005,22(3):275-281. [41] KRAUSS A, NEUMEYER C. Wavelength dependence of the optomotor response in zebrafish (Danio rerio)[J]. Vision Research,2003,43(11):1275-1284. [42] MAASWINKEL H, LI L. Spatio-temporal frequency characteristics of the optomotor response in zebrafish[J]. Vision Research,2003,43(1):21-30. [43] BAK-COLEMAN J, SMITH D, COOMBS S. Going with, then against the flow:evidence against the optomotor hypothesis of fish rheotaxis[J]. Animal Behaviour,2015,107:7-17. [44] ARNOLD G P. Rheotropism in fishes[J]. Biological Reviews,1974,49(4):515-576. [45] JORDAN H. Rheotropism of Epinephelus striatus Bloch[J]. Proceedings of the National Academy of Sciences of the United States of America,1917,3(3):157-159. [46] VAN TRUMP W J, MCHENRY M J. The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus)[J]. Integrative and Comparative Biology, 2013,53(5):799-809. [47] BAK-COLEMAN J, COURT A, PALEY D A, et al. The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information[J]. Journal of Experimental Biology,2013,216(21):4011-4024. [48] BAK-COLEMAN J B, COOMBS S. Sedentary behavior as a factor in determining lateral line contributions to rheotaxis[J]. Journal of Experimental Biology,2014,217(13):2338-2347. [49] BAKER C F, MONTGOMERY J C. The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus[J]. Journal of Comparative Physiology A,1999,184(5):519-527. [50] SULI A, WATSON G M, RUBEL E W, et al. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells[J]. PLoS One,2012,7(2):e29727. [51] 齐亮,杨宇,王悦,等.鱼类对水动力环境变化的行为响应特征[J].河海大学学报(自然科学版),2012,40(4):438-445. [52] 朱志明.运动训练下多鳞四须鲃(Barbodes schwanenfeldi)肌肉和肝脏糖、脂代谢研究[D].广州:暨南大学,2014. [53] CHEN Z L,YE Z Y, JI M D, et al. Effects of flow velocity on growth and physiology of juvenile largemouth bass (Micropterus salmoides) in recirculating aquaculture systems[J]. Aquaculture Research,2021,52(7):3093-3100. [54] INOUE L A K A, HACKBARTH A, ARBERLÁEZ-ROJAS G, et al. Growth performance and metabolism of the neotropical fish Piaractus mesopotamicus under sustained swimming[J]. Aquaculture,2019,511:734219. [55] MERINO G E, PIEDRAHITA R H, CONKLIN D E. Effect of water velocity on the growth of California halibut (Paralichthys californicus) juveniles[J]. Aquaculture,2007,271(1/2/3/4):206-215. [56] IBARZ A, FELIP O, FERNÁNDEZ-BORRÀS J, et al. Sustained swimming improves muscle growth and cellularity in gilthead sea bream[J]. Journal of Comparative Physiology B,2011,181(2):209-217. [57] 虞顺年.运动训练对黑棘鲷和斜带石斑鱼生长、抗氧化能力、非特异性免疫的影响及适宜放流规格探讨[D].上海:上海海洋大学,2017. [58] LIU G Y, WU Y J, QIN X H, et al. The effect of aerobic exercise training on growth performance, innate immune response and disease resistance in juvenile Schizothorax prenanti[J]. Aquaculture, 2018,486:18-25. [59] 魏小岚.运动训练影响尼罗罗非鱼(Oreochromis niloticus)蛋白质与糖类代谢及其营养需求的生理机制研究[D].广州:暨南大学,2017. [60] 胡佳,李艳华,王鲁,等.不同流速下西杂鲟稚鱼生长对比研究[J].水产科学,2022,41(6):1023-1028. [61] SCHRAM E, VERDEGEM M C J, WIDJAJA R T O B H, et al. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810)[J]. Aquaculture,2009,292(1/2):46-52. [62] LIU Y, CAO Z D, FU S J, et al. The effect of exhaustive chasing training and detraining on swimming performance in juvenile darkbarbel catfish (Peltebagrus vachelli)[J]. Journal of Comparative Physiology B,2009,179(7):847-855. [63] YANG M, GAO J, KE H J, et al. Transcriptome-based analysis of the response mechanism of leopard coral grouper liver at different flow velocities[J]. Fishes,2022,7(5):279. [64] CASTRO V, GRISDALE-HELLAND B, HELLAND S J, et al. Aerobic training stimulates growth and promotes disease resistance in Atlantic salmon (Salmo salar)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2011,160(2):278-290. [65] 刘国勇,韩京成,涂志英,等.流速对细鳞裂腹鱼血液学指标的影响研究[J].安徽农业科学,2011,39(12):7298-7300. [66] ARBELÁEZ-ROJAS G A, MORAES G. Sustained swimming and stocking density interaction in the performance and body composition of matrinxã Brycon amazonicus juveniles[J]. Ciência Rural,2009,39(1):201-208. [67] 许娜,刘馨璐,汤蓉,等.不同流速对草鱼幼鱼甲状腺激素代谢的影响[J].淡水渔业,2021,51(5):106-112. [68] PALSTRA A P, SCHNABEL D, NIEVEEN M C, et al. Temporal expression of hepatic estrogen receptor 1, vitellogenin1 and vitellogenin2 in European silver eels[J]. General and Comparative Endocrinology,2010,166(1):1-11. [69] PATTERSON D A, MACDONALD J S, HINCH S G, et al. The effect of exercise and captivity on energy partitioning, reproductive maturation and fertilization success in adult sockeye salmon[J]. Journal of Fish Biology,2004,64(4):1039-1059. [70] PALSTRA A P, PLANAS J V. Fish under exercise[J]. Fish Physiology and Biochemistry,2011,37(2):259-272. [71] MCCLURE C A, HAMMELL K L, MOORE M, et al. Risk factors for early sexual maturation in Atlantic salmon in seawater farms in New Brunswick and Nova Scotia, Canada[J]. Aquaculture,2007,272(1/2/3/4):370-379. [72] FELIP A, ZANUY S, MURIACH B, et al. Reduction of sexual maturation in male Dicentrarchus labrax by continuous light both before and during gametogenesis[J]. Aquaculture,2008,275(1/2/3/4):347-355. [73] GRAZIANO M, BENITO R, PLANAS J V, et al. Swimming exercise to control precocious maturation in male seabass (Dicentrarchus labrax) [J]. BMC Developmental Biology,2018,18(1):10. [74] PALSTRA A P, VAN DEN THILLART G E E J M. Swimming physiology of European silver eels (Anguilla anguilla L. ):energetic costs and effects on sexual maturation and reproduction[J]. Fish Physiology and Biochemistry, 2010,36(3):297-322. [75] 朱瑶.大坝对鱼类栖息地的影响及评价方法述评[J].中国水利水电科学研究院学报,2005,3(2):100-103. [76] XU L S, YIN Z J. Spawning flow velocity demand for representative fish species in the Upper Yangtze River[J]. IOP Conference Series:Earth and Environmental Science,2020,525(1):012060. [77] CHEN Q W,ZHANG J Y, CHEN Y C, et al. Inducing flow velocities to manage fish reproduction in regulated rivers[J]. Engineering,2021,7(2):178-186. [78] 陈明千,脱友才,李嘉,等.鱼类产卵场水力生境指标体系初步研究[J].水利学报,2013,44(11):1303-1308. [79] MARTIN C I, JOHNSTON I A. Endurance exercise training in common carp Cyprinus carpio L. induces proliferation of myonuclei in fast muscle fibres and slow muscle fibre hypertrophy[J]. Journal of Fish Biology, 2006,69(4):1221-1227. [80] 穆小平,林小涛,朱志明,等.逆流运动及葵花籽油替代鱼油对吉富罗非鱼生长和体成分的影响[J].南方水产科学,2014,10(2):27-35. [81] WOHLGEMUTH S E, SEO A Y, MARZETTI E, et al. Skeletal muscle autophagy and apoptosis during aging:effects of calorie restriction and life-long exercise[J]. Experimental Gerontology,2010,45(2):138-148. [82] VAINSHTEIN A, HOOD D A. The regulation of autophagy during exercise in skeletal muscle[J]. Journal of Applied Physiology,2016,120(6):664-673. [83] OGASAWARA R, SUGINOHARA T. Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis[J]. The FASEB Journal,2018,32(11):5824-5834. [84] 王峰,雷霁霖.工厂化循环水养殖模式放养密度对半滑舌鳎成鱼生长和肌肉营养成分的影响[J].中国工程科学,2015,17(1):19-26. [85] LI X M, YUAN J M, FU S J, et al. The effect of sustained swimming exercise on the growth performance, muscle cellularity and flesh quality of juvenile qingbo (Spinibarbus sinensis)[J]. Aquaculture,2016,465:287-295. [86] HUANG X X, HEGAZY A M, ZHANG X Z. Swimming exercise as potential measure to improve flesh quality of cultivable fish:a review[J]. Aquaculture Research,2021,52(12):5978-5989. [87] LI X M, YU L J, WANG C, et al. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2013,166(1):8-16. [88] RASMUSSEN R S, HEINRICH M T, HYLDIG G, et al. Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres and proximate chemical composition of fillets[J]. Aquaculture,2011,314(1/2/3/4):159-164. [89] RINCÓN L, CASTRO P L, ÁLVAREZ B, et al. Differences in proximal and fatty acid profiles, sensory characteristics, texture, colour and muscle cellularity between wild and farmed blackspot seabream (Pagellus bogaraveo)[J]. Aquaculture,2016,451:195-204. [90] PODDUTURI R, PETERSEN M A, VESTERGAARD M, et al. Case study on depuration of RAS-produced pikeperch (Sander lucioperca) for removal of geosmin and other volatile organic compounds (VOCs) and its impact on sensory quality[J]. Aquaculture,2021,530:735754. [91] SCHRAM E, SCHRAMA J, KUSTERS K, et al. Effects of exercise and temperature on geosmin excretion by European eel (Anguilla anguilla)[J]. Aquaculture,2016,451:390-395. [92] HAGEN Ø, SOLBERG C, SIRNES E, et al. Biochemical and structural factors contributing to seasonal variation in the texture of farmed Atlantic halibut (Hippoglossus hippoglossus L. ) flesh[J]. Journal of Agricultural and Food Chemistry,2007,55(14):5803-5808. [93] WEBBER J D, CHUN S N, MACCOLL T R, et al. Upstream swimming performance of adult white sturgeon:effects of partial baffles and a ramp[J]. Transactions of the American Fisheries Society,2007,136(2):402-408. [94] 娄宇栋,何娇娇,竺琰,等.3种常见养殖鱼类的游泳喜好研究[J].浙江海洋大学学报(自然科学版),2018,37(3):228-232. [95] MASALÓ I, OCA J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquacultural Engineering,2016,74:84-95.