Genome-Wide Identification, Molecular Evolution, and Expression of FXYD Gene Family in Tibetan Naked Carp Gymnocypris przewalskii ssp. przewalskii
ZHOU Bingzheng1,2,3, CHEN Shengxue1,2,3, LIU Sijia1,2, QI Delin4, QI Hongfang5, WANG Yang5, ZHAO Kai1,2, TIAN Fei1,2
1. Laboratory of Evolutionary and Functional Genomics of Highland Fish, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; 2. Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University, Xining 810001, China; 5. Qinghai Provincial Key Laboratory of Gymnocypris Przewalskii ssp. przewalskii Reproduction, Conservation Center of Gymnocypris Przewalskii ssp. przewalskii, Xining 810001, China
Abstract:Tibetan naked carp Gymnocypris przewalskii ssp. przewalskii is the only species of Schizothoracinae (Cyprinidae), which could adapt to the high saline-alkaline water environment in the Qinghai Lake. In the present study, we identified 16 FXYD genes in G. przewalskii ssp. przewalskii based on the G. przewalskii ssp. przewalskii genome. FXYD (Phen-XAA-Tyr-ASP) gene family encodes a group of small transmembrane proteins that regulate ion channel activities in responses to saline stress in a variety of organisms. Multiple sequence alignment and phylogenetic analysis revealed that 16 gpFXYD genes were divided into five subfamilies. Collinearity analysis indicated that 12 family members of the gpFXYD gene family were originated from genome-wide duplication, which showed synteny with their counterparts in zebrafish. This result suggested that the gain of extra copies of FXYD genes might be attributed to the whole genome duplication in G. przewalskii ssp. przewalskii. Molecular evolution analysis showed that the Ka/Ks values of gpFXYD1b/1c and gpFXYD5c/5d were greater than 1, which indicates that the positive selection might occur during evolution, leading to adaptive evolution. The subfamilies of gpFXYDs were expressed in diverse tissues, including heart, hepatopancreas, brain, kidney, gill, intestine and gonad. gpFXYD1s and gpFXYD7s were specifically expressed in the heart and brain. The results indicated that the function of gpFXYD subfamilys was in a tissue-dependent manner. After the transition from freshwater to saline water condition, the expression of gpFXYD5s, gpFXYD6s and gpFXYD11s showed significant changes in kidney and gill. The transcriptional variations might contribute to the ion transport and osmoregulation in G. przewalskii ssp. przewalskii at high salinity. The current study laid a foundation for understanding the adaptation of G. przewalskii ssp. przewalskii to high salinity environment, providing new insights into the molecular breeding of aquatic animals.
[1] WOOD C,DU J Z,ROGERS J,et al.Przewalski's naked carp (Gymnocypris przewalskii):an endangered species taking a metabolic holiday in Lake Qinghai,China[J].Physiological and Biochemical Zoology,2007,80(1):59-77. [2] ZHANG R Y,PENG Z G,LI G G,et al.Ongoing speciation in the Tibetan Plateau Gymnocypris species complex[J].PLoS One,2013,8(8):e71331. [3] WANG Y S,GONZALEZ R J,PATRICK M L,et al.Unusual physiology of scale-less carp,Gymnocypris przewalskii,in Lake Qinghai:a high altitude alkaline saline lake[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2003,134(2):409-421. [4] 田菲,赵凯.青海湖裸鲤高原极端环境适应的基因组基础[G].四川省动物学会, 重庆市动物学会, 云南省动物学会,等.第八届中国西部动物学学术研讨会论文集. 贵阳: 四川省动物学会,2019:98. [5] 苏娟娟,武一曼.FXYD蛋白家族的研究进展[J].海峡药学,2011,23(3):1-4. [6] MAHMMOUD Y A,VORUM H,CORNELIUS F.Interaction of FXYD10 (PLMS) with Na,K-ATPase from shark rectal glands.Close proximity of Cys74 of FXYD10 to Cys254 in the a domain of the alpha-subunit revealed by intermolecular thiol cross-linking[J].The Journal of Biological Chemistry,2005,280(30):27776-27782. [7] GEERING K.FXYD proteins:new regulators of Na-K-ATPase[J].American Journal of Physiology.Renal Physiology,2006,290(2):F241-F250. [8] DELPRAT B,BIBERT S,GEERING K.FXYD proteins: novel regulators of Na,K-ATPase[J].Medicine sciences,2006,22(6/7):633-638. [9] SWEADNER K J,ARYSTARKHOVA E,DONNET C,et al.FXYD proteins as regulators of the Na,K-ATPase in the kidney[J].Annals of the New York Academy of Sciences,2003,986(1):382-387. [10] MAHMMOUD Y A,CRAMB G,MAUNSBACH A B,et al.Regulation of Na,K-ATPase by PLMS,the phospholemman-like protein from shark:molecular cloning,sequence,expression,cellular distribution,and functional effects of PLMS[J].The Journal of Biological Chemistry,2003,278(39):37427-37438. [11] TIPSMARK C K.Identification of FXYD protein genes in a teleost:tissue-specific expression and response to salinity change[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2008,294(4):R1367-R1378. [12] YANG W K,KANG C K,HSU A D,et al.Different modulatory mechanisms of renal FXYD12 for Na+-K+-ATPase between two closely related medakas upon salinity challenge[J].International Journal of Biological Sciences,2016,12(6):730-745. [13] CHANG C H,YANG W K,LIN C H,et al.FXYD11 mediated modulation of Na+/K+-ATPase activity in gills of the brackish medaka (Oryzias dancena) when transferred to hypoosmotic or hyperosmotic environments[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2016,194:19-26. [14] YANG W K,YANG I C,CHUANG H J,et al.Positive correlation of gene expression between branchial FXYD proteins and Na+/K+-ATPase of euryhaline milkfish in response to hypoosmotic challenges[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2019,231:177-187. [15] TANG C H,LAI D Y,LEE T H.Effects of salinity acclimation on Na+-K+-ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica)[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2012,163(3-4):302-310. [16] SAITO K,NAKAMURA N,ITO Y,et al.Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis[J].Frontiers in Physiology,2010,1:129. [17] ARYSTARKHOVA E,BOULEY R,LIU Y B,et al.Impaired AQP2 trafficking in Fxyd1 knockout mice:a role for FXYD1 in regulated vesicular transport[J].PLoS One,2017,12(11):e0188006. [18] 祁得林.青海湖裸鲤染色体核型及多倍性的初步研究[J].青海大学学报(自然科学版),2004,22(2):44-47. [19] 闫学春,史建全,孙效文,等.青海湖裸鲤的核型研究[J].东北农业大学学报,2007,38(5):645-648. [20] WANG D P,WAN H L,ZHANG S,et al.γ-MYN:a new algorithm for estimating Ka and Ks with consideration of variable substitution rates[J].Biology Direct,2009,4:20. [21] WANG D P,ZHANG S,HE F H,et al.How do variable substitution rates influence ka and ks calculations?[J].Genomics,Proteomics & Bioinformatics,2009,7(3):116-127. [22] 郭安源,朱其慧,陈新,等.GSDS:基因结构显示系统[J].遗传,2007,29(8):1023-1026. [23] MADSEN S S,BOLLINGER R J,BRAUCKHOFF M,et al.Gene expression profiling of proximal and distal renal tubules in Atlantic salmon (Salmo salar) acclimated to fresh water and seawater[J].American Journal of Physiology.Renal Physiology,2020,319(3):F380-F393. [24] WANG P J,LIN C H,HWANG H H,et al.Branchial FXYD protein expression in response to salinity change and its interaction with Na+-K+-ATPase of the euryhaline teleost Tetraodon nigroviridis[J].The Journal of Experimental Biology,2008,211(Pt 23):3750-3758. [25] VENKATESH B.Evolution and diversity of fish genomes[J].Current Opinion in Genetics & Development,2003,13(6):588-592. [26] GARTY H,KARLISH S J D.Role of FXYD proteins in ion transport[J].Annual Review of Physiology,2006,68:431-459. [27] BIBERT S,ROY S,SCHAER D,et al.Phosphoryla-tion of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na+-K+-ATPase isozymes[J].Journal of Biological Chemistry,2008,283(1):476-486. [28] DESPA S,BOSSUYT J,HAN F,et al.Phospholem-man-phosphorylation mediates the β-adrenergic effects on Na/K pump function in cardiac myocytes[J].Circulation Research,2005,97(3):252-259. [29] MAHMMOUD Y A,VORUM H,CORNELIUS F.Identification of a phospholemman-like protein from shark rectal glands:evidence for indirect regulation of Na+-K+-ATPase by protein kinase c via a novel member of the FXYDY family[J].The Journal of Biological Chemistry,2000,275(46):35969-35977. [30] MEYER D J,BIJLANI S,DE SAUTU M,et al.FXYD protein isoforms differentially modulate human Na/K pump function[J].The Journal of General Physiology,2020,152(12):e202012660. [31] MISHRA N K,HABECK M,KIRCHNER C,et al.Molecular mechanisms and kinetic effects of FXYD1 and phosphomimetic mutants on purified human Na+K+-ATPase[J].The Journal of Biological Chemistry,2015,290(48):28746-28759. [32] LUBARSKI I,PIHAKASKI-MAUNSBACH K, KARLISH S J D,et al.Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel)[J].Journal of Biological Chemistry,2005,280(45):37717-37724. [33] OLSVIK P A,LIE K K,JORDAL A E O,et al.Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon[J].BMC Molecular Biology,2005,6:21. [34] GLASAUER S M K,NEUHAUSS S C F.Whole-genome duplication in teleost fishes and its evolutionary consequences[J].Molecular Genetics and Genomics,2014,289(6):1045-1060. [35] LEI Y,YANG L D,JIANG H F,et al.Recent genome duplications facilitate the phenotypic diversity of Hb repertoire in the Cyprinidae[J].Science China Life Sciences,2021,64(7):1149-1164. [36] RAVI V,VENKATESH B.Rapidly evolving fish genomes and teleost diversity[J].Current Opinion in Genetics & Development,2008,18(6):544-550. [37] NOLTE A W.Genomic access to the diversity of fishes[J].Methods in Molecular Biology (Clifton,N.J.),2020,2090:397-411. [38] STUDER R A,ROBINSON-RECHAVI M.How confident can we be that orthologs are similar,but paralogs differ?[J].Trends in Genetics,2009,25(5):210-216. [39] HU P,LI S Q,ZHONG Y,et al.Identification of fxyd genes from the spotted scat (Scatophagus argus):molecular cloning,tissue-specific expression,and response to acute hyposaline stress[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2014,174:15-22. [40] ZHOU Q,WANG W.On the origin and evolution of new genes—a genomic and experimental perspective[J].Journal of Genetics and Genomics,2008,35(11):639-648. [41] BEGUIN P,CRAMBERT G,MONNET-TSCHUDI F,et al.FXYD7 is a brain-specific regulator of Na,K-ATPase alpha1-beta isozymes[J].The EMBO Journal,2002,21(13):3264-3273. [42] CHANG C H,YANG W K,LIN C H,et al.FXYD11 mediated modulation of Na+/K+-ATPase activity in gills of the brackish medaka (Oryzias dancena) when transferred to hypoosmotic or hyperosmotic environments[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2016,194:19-26. [43] GEERING K,BÉGUIN P,GARTY H,et al.FXYD proteins:new tissue- and isoform-specific regulators of Na,K-ATPase[J].Annals of the New York Academy of Sciences,2003,986:388-394. [44] TIPSMARK C K,MADSEN S S.Differential regulation of FXYD5,FXYD9 and FXYD11 expression in Atlantic salmon gill during parr-smolt transformation and sea water acclimation [J].The FASEB Journal,2008,22(S1):935.10. [45] XU P,XU J,LIU G G,et al.The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio[J].Nature Communications,2019,10(1):4625. [46] 刘济源,么宗利,来琦芳,等.盐碱胁迫对青海湖裸鲤耗氧率、血浆渗透浓度和离子浓度的影响[J].生态学杂志,2012,31(3):664-669. [47] 张仁意,李国刚,张存芳,等.不同生境下青海湖裸鲤(Gymnocypris przewalskii)两亚种鳃形态差异及其功能适应[J].动物学研究,2013,34(4):387-391. [48] CRAMBERT G,GEERING K.FXYD proteins:new tissue-specific regulators of the ubiquitous Na,K-ATPase[J].Science's STKE:Signal Transduction Knowledge Environment,2003,2003(166):RE1. [49] LUBARSKI I,KARLISH S J D,GARTY H.Structural and functional interactions between FXYD5 and the Na+-K+-ATPase[J].American Journal of Physiology-Renal Physiology,2007,293(6):F1818-F1826. [50] LIANG F F,LI L,ZHANG G S,et al.Na+/K+-ATPase response to salinity change and its correlation with FXYD11 expression in Anguilla marmorata[J].Journal of Comparative Physiology B,2017,187(7):973-984.