Effects of Different Nutrient Levels on Gluconeogenesis and Glycogenolysis of Juvenile Mandarin Fish Siniperca chuatsi
MA Chenxi, ZHAO Jinliang, SONG Yindu, ZHAO Liangliang
Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture and Rural Affairs, Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
摘要为探究正常投喂、葡萄糖注射和饥饿3种不同营养水平对鳜内源葡萄糖生成途径的影响,测定正常投喂、葡萄糖注射和饥饿3个试验组鳜的血糖含量、肝糖原含量、胰岛素水平、胰高血糖素水平及糖异生关键酶磷酸烯醇式丙酮酸羧激酶、果糖-1,6-二磷酸酶、葡萄糖-6-磷酸酶和糖原磷酸化酶活性,以及各酶基因mRNA相对表达水平。结果显示,正常投喂组血糖、肝糖原含量均出现显著升高;胰岛素水平显著升高,胰高血糖素水平显著降低。糖异生关键酶活性无显著变化,糖原磷酸化酶活性受到抑制;果糖-1,6-二磷酸酶、糖原磷酸化酶基因表达水平受到抑制。葡萄糖注射组血糖、肝糖原含量显著升高;胰岛素水平显著升高、胰高血糖素水平显著降低;磷酸烯醇式丙酮酸羧激酶活性受到抑制,果糖-1,6-二磷酸酶、葡萄糖-6-磷酸酶活性不受抑制,糖原磷酸化酶活性受到抑制;磷酸烯醇式丙酮酸羧激酶、果糖-1,6-二磷酸酶、葡萄糖-6-磷酸酶基因表达水平无显著变化,糖原磷酸化酶基因表达水平受到抑制。饥饿5、10 d,血糖水平糖原磷酸化酶活性显著升高,磷酸烯醇式丙酮酸羧激酶、果糖-1,6-二磷酸酶、葡萄糖-6-磷酸酶活性无显著变化;糖原磷酸化酶基因表达水平显著升高,磷酸烯醇式丙酮酸羧激酶、葡萄糖-6-磷酸酶基因表达水平显著升高;饥饿15 d,磷酸烯醇式丙酮酸羧激酶、果糖-1,6-二磷酸酶、葡萄糖-6-磷酸酶活性显著升高,糖原磷酸化酶活性下降至饥饿前水平;磷酸烯醇式丙酮酸羧激酶、果糖-1,6-二磷酸酶、葡萄糖-6-磷酸酶基因表达水平显著升高,糖原磷酸化酶基因表达水平显著下降。结果表明,正常摄食的鳜血糖水平显著升高,糖异生途径无显著变化,糖原分解途径显著抑制。0~6 h血糖升高,推测为食物消化吸收所致,6 h 到达“高血糖”峰值。6~16 h食物消化吸收继续,葡萄糖吸收后,糖原合成明显提高,从而维持血糖平衡。由于血糖水平高,同时,糖原分解途径抑制(糖原磷酸化酶活性0~12 h下降)。6 h 血糖最高,反映了鳜鱼维持“血糖平衡”的时间,如果血糖继续升高,可能会引起机体生理异常。故血糖水平对鳜糖异生和糖原分解途径影响不同,糖异生与糖原分解途径受血糖水平调节。
Abstract:In order to explore the effects of three nutrient levels of normal feeding, glucose injection and starvation on the endogenous glucose production pathway of mandarin fish (Siniperca chuatsi), mandarin fish with body weight of (36.70±0.52) g were reared in cages of 1 m×1 m×1 m at stocking density of 25, 25 and 15 fish per box at water temperature of (23.0±0.5) °C, respectively, and were fed live grass carp Ctenopharyngodon idella with body weight of (8.15±0.16) g fingerlings (normal feeding group), 1 mg/g body weight intraperitoneal injection of glucose (glucose group) and starvation for 15 days (starvation group). Blood glucose and liver glycogen contents, insulin level, glucagon level, and activities of key enzymes in gluconeogenesis, including phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase) , and glucose-6-phosphatase(G6Pase)were measured 1, 2, 4, 6, 12 and 16 h after feeding, 1, 2, 4, 6, 8, 12, and 24 h after injection, and 5, 10 and 15 days after starvation, and the relative mRNA expression levels was detected in each enzyme gene using real-time PCR. The results showed that blood glucose and liver glycogen contents and insulin level were significantly increased in the normal feeding group, and glucagon was significantly decreased, without significant change in the activity of key enzymes and inhibition of the activities of GPase, FBPase and GPase in gluconeogenesis. There were persistent hyperglycemia, and inhibition of PEPCK and the GPase activities and the relative expression levels of GPase in glucose injection group, without inhibition of the FBPase and G6Pase activities, and without significant changes in relative expression levels of PEPCK, FBPase, and G6Pase genes. The mandarin fish in starvation group had significant decrease in the blood glucose content in 10 days, and significant increase in glucagon content for 5 days, mainly relying on glycogenolysis to generate glucose from significantly elevated GPase activity during pre-and mid-stage (5 d and 10 d) of starvation. There were significant increase in relative expression levels of GPase, PEPCK, and G6Pase genes, thus glucose was mainly generated by gluconeogenesis at 15 day starvation. It was found that the level of blood glucose was significantly increased in the normal feeding group, and that the glycogenolysis pathway was significantly inhibited. The increase in 0—6 h blood glucose content was speculated to be caused by food digestion and absorption, with the peak of “hyperglycemia” at 6 h, and 6—16 h food digestion and absorption continue, after glucose absorption, glycogen synthesis was significantly improved, thus maintaining blood glucose balance. Due to high blood glucose levels, at the same time, glycogenolysis was inhibited (GPase activity decreased 0—12 h). The highest blood glucose level at 6 h reflected the time that the mandarin fish maintained "blood glucose balance". If the blood glucose level continued to rise, it caused physiological abnormalities in the body. The levels of blood glucose had different effects on gluconeogenesis and glycogenolysis pathways of mandarin fish. The gluconeogenesis and glycogenolysis pathways were regulated by the level of blood glucose.
马晨夕, 赵金良, 宋银都, 赵亮亮. 不同营养水平对鳜幼鱼糖异生和糖原分解的影响[J]. 水产科学, 2024, 43(5): 707-716.
MA Chenxi, ZHAO Jinliang, SONG Yindu, ZHAO Liangliang. Effects of Different Nutrient Levels on Gluconeogenesis and Glycogenolysis of Juvenile Mandarin Fish Siniperca chuatsi. Fisheries Science, 2024, 43(5): 707-716.
[1] 杨丽萍,秦超彬,郑文佳,等.鱼类的葡萄糖感知与糖代谢调节研究进展[J].水产学报,2014,38(9):1639-1649. [2] POLAKOFS, PANSERAT S, SOENGAS J L, et al. Glucose metabolism in fish:a review[J].Journal of Comparative Physiology.B, Biochemical, Systemic, and Environmental Physiology,2012,182(8):1015-1045. [3] 毛义波.不同食性鱼类糖耐受能力比较的研究[D].湛江:广东海洋大学,2014. [4] ENES P, PANSERAT S, KAUSHIK S, et al. Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures[J].Comparative Biochemistry and Physiology.Part A: Molecular & Integrative Physiology,2008,149(1):80-86. [5] 柴法蕊.鳜鱼饲料中糖脂比对摄食、生长及糖脂代谢的影响[D].武汉:华中农业大学,2023. [6] 孙海林,孙成飞,董浚键,等.翘嘴鳜转录组测序及SSR新标记的开发与应用[J].基因组学与应用生物学,2019,38(10):4413-4421. [7] 魏磊,朱书琴,刘伟,等.鳜回交子代与亲本子代间体型和体斑特征比较[J].南方水产科学,2020,16(2):1-7. [8] 刘伟,赵金良,魏磊,等.鳜早期色素发育和色彩图案的形成[J].动物学杂志,2019,54(2):236-244. [9] SOENGAS J L. Integration of nutrient sensing in fish hypothalamus[J]. Frontiers in Neuroscience,2021,15:653928. [10] 曾妍芝,李红燕,王广军,等.脑室注射葡萄糖对翘嘴鳜摄食和糖代谢的影响[J].水产学报,2024,48(4):298-309. [11] 方刘.鳜鱼、草鱼、斑马鱼早期高糖营养程序化对糖代谢调控的研究[D].武汉:华中农业大学,2015. [12] 任萍,梁旭方,方刘,等.鳜对葡萄糖和糊精利用差异比较研究[J].水生生物学报,2020,44(2):364-371. [13] 马晨夕,赵金良,曾萌冬,等.饲料投喂、饥饿与活饵再投喂对鳜幼鱼糖代谢的影响[J].水产科学,2021,40(6):818-825. [14] 张海明,刘立新,林可椒,等.鳜鱼摄食行为及其饵料鱼合理规格初探[J].水利渔业,1989,10(6):24-28. [15] 宋银都,曾萌冬,周昊天,等.不同溶解氧水平对鳜呼吸代谢酶及其基因表达量的影响[J].水产科学,2022,41(3):438-444. [16] 马燕梅,梅景良.鳜胃肠道和肝脏主要消化酶活性的研究[J].福建畜牧兽医,2004,26(3):10-11. [17] ZHANG Y P, LIANG X F, HE S, et al. Metabolic responses of Chinese perch (Siniperca chuatsi) to different levels of dietary carbohydrate[J]. Fish Physiology and Biochemistry,2021,47(5):1449-1465. [18] MOONT W, GAMBAROTTA A, CAPUZZO A, et al. Glucagon and glucagon-like peptide signaling pathways in the liver of two fish species, the American eel and the black bullhead[J].Journal of Experimental Zoology,1997,279(1):62-70. [19] ENES P, PANSERAT S, KAUSHIK S, et al. Nutritional regulation of hepatic glucose metabolism in fish[J].Fish Physiology and Biochemistry,2009,35(3):519-539. [20] 廖磊,刘浩,赵柳兰,等.腹腔注射葡萄糖对大口黑鲈血糖稳态和糖代谢关键酶活性的影响[J].淡水渔业,2022,52(3):105-112. [21] 程镇燕,范泽,张植元,等.注射葡萄糖对鲤鱼糖代谢关键酶和相关激素的影响[J].江苏农业科学,2018,46(4):163-167. [22] 蔡春芳,陈立侨.鱼类对糖的代谢[J].水生生物学报,2008,32(4):592-597. [23] 李弋,邱红,侯迎梅,等.腹腔注射葡萄糖对大黄鱼血液生化指标及糖代谢关键酶表达量的影响[J].水产学报,2017,41(5):723-733. [24] CHEN Y J, WANG X Y, PI R R, et al. Preproinsulin expression, insulin release, and hepatic glucose metabolism after a glucose load in the omnivorous GIFT tilapia Oreochromis niloticus[J].Aquaculture,2018,482:183-192. [25] ENES P, PERES H, SANCHEZ-GURMACHES J, et al.Insulin and IGF-I response to a glucose load in European sea bass (Dicentrarchus labrax) juveniles[J].Aquaculture,2011,315(3/4):321-326. [26] 张武财.注射葡萄糖对军曹鱼糖代谢和葡萄糖转运蛋白基因表达的影响[D].湛江:广东海洋大学,2016. [27] 范国燕.饥饿对鳊鱼(Parabramis pekinensis)和南方鲇(Silurus meridonalis)幼鱼糖代谢影响的研究[D].重庆:重庆师范大学,2011. [28] 王沛宾,林学群.饥饿和恢复投喂对红鳍笛鲷生化组成的影响[J].水产科学,2005,24(12):10-13.