Effects of Dietary Clostridium butyricum and Photosynthetic Bacterium on Immune Characteristics of Sea Cucumber Apostichopus japonicus
WANG Xuda, YE Bo, DONG Ying, WANG Xiaoyue, ZHAO Zhenjun, LIU Danni, YANG Boxue, LI Shilei
Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
Abstract:In order to evaluate the effects of dietary bacterium Clostridium butyricum and photosynthetic bacterium Rhodopseudomonas palustris on the physicochemical parameters of body cavity fluids, disease resistance, digestive tract enzyme activity and microbiota composition in sea cucumber Apostichopus japonicus, the sea cucumber with body weight of (8.46±0.58) g was reared in an aquarium for 30 days and fed basic diet (control group), the basic diet supplemented with 1.0×107 cfu/g C. butyricum or photosynthetic bacterium, and 0.5×107 cfu/g probiotics at the same time (combined group) at a water temperature of (16±1)℃. The activities of immune enzymes and digestive enzymes in the body cavity fluid of the sea cucumber were measured every 10 days. At the end of the experiment, the growth and the structural changes in digestive tract microbiota were evaluated in the sea cucumber. The results showed that the better growth performance was observed in the sea cucumber in combined group, with weight gain rate of 19.14% and specific growth rate of 0.582%/d. Meanwhile,the digestive enzyme and immune enzyme activities were found to be relatively high in combination group,with activities of 38.5 U/mg in acid phosphatase, 34.5 U/mg in alkaline phosphatase, 89.5 U/mg in superoxide dismutase, 10.8 U/mg in amylase, 18.8 U/mg in lipase, and 13.8 U/mg in trypsin, indicating that dietary C. butyricum and R. palustris in combination led to more efficiently improve growth, digestion, responsiveness to phosphatase, and oxidation resistance compared to the others.In addition, there was more capable of regulating digestive tract flora structure in the sea cucumber in combined group by increasing the beneficial bacteria related to energy synthesis and metabolic conversion, and suppressing the potential pathogens involved in organic damage and metabolic disorders.Furthermore, the results of the challenge test showed that the sea cucumber in combined group had superior ability to improve disease resistance by reducing the cumulative mortality rates (48%) and the counts of Vbrio splendidus compared to the others. The findings confirmed that dietary C. butyricum and R. palustris effectively enhanced the physiological and immune parameters, optimized the structure of the digestive tract flora, and strengthened the disease resistance of sea cucumber.
王旭达, 叶博, 董颖, 王笑月, 赵振军, 刘丹妮, 杨博学, 李石磊. 丁酸梭菌和光合细菌对仿刺参免疫机能的影响[J]. 水产科学, 2025, 44(5): 685-694.
WANG Xuda, YE Bo, DONG Ying, WANG Xiaoyue, ZHAO Zhenjun, LIU Danni, YANG Boxue, LI Shilei. Effects of Dietary Clostridium butyricum and Photosynthetic Bacterium on Immune Characteristics of Sea Cucumber Apostichopus japonicus. Fisheries Science, 2025, 44(5): 685-694.
[1] 朱厚祥,孔令锋,李琪,等.盐度、温度和培育密度对白刺参幼虫生长及存活的影响[J]. 中国海洋大学学报(自然科学版),2013,43(7):34-39. [2] 王旭达,关晓燕,王鉴,等.地衣芽孢杆菌对仿刺参生长、消化和免疫功能的影响[J]. 水产科学,2021,40(2):151-158. [3] 谭杰.刺参(Apostichopus japonicus)苗种繁育关键技术及幼参对操作胁迫的免疫应答研究[D]. 青岛:中国海洋大学,2015:5-8. [4] KUEBUTORNYE F K A, ABARIKE E D, LU Y S. A review on the application of Bacillus as probiotics in aquaculture[J]. Fish & Shellfish Immunology,2019,87:820-828. [5] NEWAJ-FYZUL A,AUSTIN B. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases[J]. Journal of Fish Diseases,2015,38(11):937-955. [6] 陈俊祥,鲁耀鹏,张秀霞,等.丁酸梭菌在水产养殖中的研究进展[J]. 中国饲料,2024(7):88-94. [7] 纪峰,魏东,赵永刚,等.光合细菌在水产养殖等领域的应用[J]. 中国微生态学杂志,2023,35(1):121-125. [8] 王旭达,蒋经伟,李石磊,等.一种养殖刺参用抑制致病弧菌的复合微生态制剂:CN114223777A[P]. 2022-03-25. [9] 徐亚飞.丁酸梭菌在水产养殖中的研究及应用进展[J]. 水产养殖,2023,44(8):18-23. [10] 张杰,周易,邢玉花.光合细菌对水产养殖水质和水生生物的影响[J]. 当代畜禽养殖业,2018(5):8. [11] 黄祎阳.益生菌在鱼类养殖中的研究进展[J]. 中国饲料,2023(18):5-8. [12] ZHANG C N, LI X F, XU W N, et al. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on growth performance, body composition, intestinal enzymes activities and gut histology of triangular bream (Megalobrama terminalis)[J]. Aquaculture Nutrition,2015,21(5):755-766. [13] HAMZA A, FDHILA K, ZOUITEN D, et al. Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae:effects on growth performance and digestive enzyme activities[J]. Fish Physiology and Biochemistry,2016,42(2):495-507. [14] MA Y X, LI M, LIU J C, et al. Effects of Bacillus aquimaris T16 on growth, enzyme activity, and disease resistance of the Yesso scallop, Patinopecten yessoensis[J]. Journal of the World Aquaculture Society,2020,51(3):702-711. [15] 韩莎,胡炜,李成林,等.饲料中添加微生态制剂对仿刺参生长、消化和免疫功能的影响[J]. 动物营养学报,2019,31(6):2800-2806. [16] XU G L, XING W, LI T L, et al. The effects of different fishmeal level diets with or without phytase supplementation on growth performance, body composition, digestibility, immunological and biochemical parameters of juvenile hybrid sturgeon (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂)[J]. Aquaculture Nutrition,2020,26(2):261-274. [17] XUE Z, LI H, WANG X L, et al. A review of the immune molecules in the sea cucumber[J]. Fish & Shellfish Immunology,2015,44(1):1-11. [18] 张宇鹏,田燚,商艳鹏,等.复合免疫增强剂对刺参生长和非特异性免疫酶活性的影响[J]. 大连海洋大学学报,2017,32(2):178-183. [19] LI Y N,KONG X, ZHANG H B. Characteristics of a novel manganese superoxide dismutase of a hadal sea cucumber (Paelopatides sp.) from the Mariana trench[J]. Marine Drugs,2019,17(2):84. [20] CONG L N, LIANG W J, WU Y, et al. High-level soluble expression of the functional peptide derived from the C-terminal domain of the sea cucumber lysozyme and analysis of its antimicrobial activity[J]. Electronic Journal of Biotechnology,2014,17(6):280-286. [21] 周红,谢全喜,鹿晓慧,等.几种丁酸梭菌的性能研究[J]. 中国酿造,2021,40(3):120-123. [22] 熊林武.光合细菌在水产养殖中的应用分析[J]. 江西水产科技,2022(6):35-36. [23] CHI C, ZHANG C Y, LIU J D, et al. Effects of marine toxin domoic acid on innate immune responses in bay scallop Argopecten irradians[J]. Journal of Marine Science and Engineering,2019,7(11):407. [24] 王印庚,方波,张春云,等.养殖刺参保苗期重大疾病“腐皮综合征” 病原及其感染源分析[J]. 中国水产科学,2006,13(4):610-616. [25] 周慧慧,马洪明,张文兵,等.仿刺参肠道潜在益生菌对稚参生长、免疫及抗病力的影响[J]. 水产学报,2010,34(6):955-963. [26] 张信娣,金叶飞,陈瑛.光合细菌对鱼病原细菌生长的影响[J]. 中国生态农业学报,2008,16(3):659-663. [27] HITIT Z Y, LAZARO C Z, HALLENBECK P C. Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris:optimization of yield using response surface methodology[J]. International Journal of Hydrogen Energy,2017,42(10):6578-6589. [28] 李建光.刺参菌群结构的分析及益生菌对刺参的影响[D]. 大连:大连理工大学,2014:10-13. [29] MI R, LI X J, SUN Y X, et al. Effects of microbial community and disease resistance against Vibrio splendidus of Yesso scallop (Patinopecten yessoensis) fed supplementary diets of tussah immunoreactive substances and antimicrobial peptides[J]. Fish & Shellfish Immunology,2022,121:446-455. [30] HEHEMANN J H, KELLY A G, PUDLO N A, et al. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(48):19786-19791. [31] LEE D E, LEE J, KIM Y M, et al. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing[J]. Journal of Microbiology,2016,54(4):296-304. [32] FUJIO-VEJAR S, VASQUEZ Y, MORALES P, et al. The gut microbiota of healthy Chilean subjects reveals a high abundance of the Phylum verrucomicrobia[J]. Frontiers in Microbiology,2017,8:1221. [33] ZHU F C, LIAN C N, HE L S. Genomic characterization of a novel tenericutes bacterium from deep-sea holothurian intestine[J]. Microorganisms,2020,8(12):1874. [34] YAMAZAKI Y, MEIRELLES P M, MINO S, et al. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps[J]. Scientific Reports,2016,6:21631. [35] CHOI E J, KWON H C, KOH H Y, et al. Colwellia asteriadis sp. nov. , a marine bacterium isolated from the starfish Asterias amurensis[J]. International Journal of Systematic and Evolutionary Microbiology,2010,60(Pt 8):1952-1957. [36] KESARCODI-WATSON A, KASPAR H, LATEGAN M J, et al. Alteromonas macleodii 0444 and Neptunomonas sp. 0536,two novel probiotics for hatchery-reared GreenshellTM mussel larvae, Perna canaliculus[J]. Aquaculture,2010,309(1/2/3/4):49-55. [37] BECATTINI S, TAUR Y, PAMER E G. Antibiotic-induced changes in the intestinal microbiota and disease[J]. Trends in Molecular Medicine,2016,22(6):458-478.