Abstract:A feeding trial was conducted to evaluate the effects of nano-zinc and nano-zinc-polysaccharide on growth and immune in rainbow trout (Oncorhynchus mykiss). Three hundreds individuals of rainbow trout with body weight of (120±3.0) g were randomly allotted to 5 groups (3 replicates and each 20 fish), and injected 1000, and 3000 mg/kg nano-zinc and nano-zinc-polysaccharide according to 1 μL/g body weight and fed a basal diet supplemented with nano-zinc and its polysaccharide for 10 days. The results showed that nano-zinc and nano-zinc-polysaccharide differently promoted the special growth rate (P<0.05). The percentage of NBT in the 1000 mg/kg nano-zinc-polysaccharide was increased by 22.3% (P<0.05) on the third day, with the maximal phagocytic percent in the 3000 mg/kg nano-zinc-polysaccharide on the sixth day. The serum bactericidal percent in the 3000 mg/kg nano-zinc was increased by 19.4% (P<0.05) on the third day, but that in the 3000 mg/kg nano-zinc-polysaccharide was increased by 32.43% (P<0.05) on the sixth day. The activities of catalase (CAT) and NOS in the serum of rainbow trout in the 1000 mg/kg nano-zinc-polysaccharide group were 26.39 U/mL and 43.38 U/mL(P<0.05) on the third day; the activities were 29.9 U/mL in SOD, 201.4 U/L in ACP, and content of 3.19 nmol/mL in MDA (P<0.05) on the sixth day. After the feeding trial, Aeromonas salraonicida injection challenged during 7 d was executed to test the effects of nano-zinc and nano-zinc-polysaccharide. There was mortality of 30% in the 1000 mg/kg nano-zinc-polysaccharide group. It is concluded that supplementation of nano-zinc and nano-zinc-polysaccharide can improve the immunity of rainbow trout, and that 1000 mg/kg nano-zinc-polysaccharide is the optimal dose.
樊英, 李乐, 于晓清, 胡发文, 李天保, 叶海斌, 刁菁. 新型锌制剂对虹鳟生长及免疫功能的影响[J]. 水产科学, 2020, 39(1): 55-62.
FAN Ying, LI Le, YU Xiaoqing, HU Fawen, LI Tianbao, YE Haibin, DIAO Jing. Effects of Nano-zinc and Nano-zinc-polysaccharide on Growth and Immunity inRainbow Trout Oncorhynchus mykiss. Fisheries Science, 2020, 39(1): 55-62.
[1]张佳明.鲈鱼和大黄鱼微量元素—锌、铁的营养生理研究[D].青岛:中国海洋大学,2007:18-46. [2]Shi H N, Scott M E, Stevenson M, et al. Zinc-deficiency impairs T cell function in mice with primary infection of Heligmosomoides polygyrus (Nematoda)[J]. Parasite Immunology,1994,16(7):339-350. [3]蒋明,黄凤,文华,等.饲料锌对团头鲂幼鱼生长性能、血清生化指标和抗氧化功能的影响[J].中国水产科学,2015,22(6):1167-1176. [4]郭腾飞,黄旭雄,苏明,等.饲料锌添加水平对凡纳滨对虾免疫抗菌机能和溶菌酶mRNA及Toll受体mRNA表达的影响[J].水产学报,2011,35(7):1081-1089. [5]张海涛,陈效儒,董晓慧,等.5种锌源对凡纳滨对虾生长、生化和免疫指标的影响[J].水产科学,2017,36(1):15-21. [6]方洛云,邹晓庭,蒋林树,等.不同锌源对断奶仔猪免疫和抗氧化作用的影响[J].中国兽医学报,2005,25(3):201-203. [7]张彩英,胡国良,郭小权,等.日粮锌源和锌水平对断奶仔猪免疫功能和抗氧化酶活性的影响[J].中国兽医学报,2011,31(9):1354-1357. [8]马恒东,王之盛,周安国,等.翻转肠囊法研究仔猪小肠对纳米氧化锌的吸收[J].中国畜牧杂志,2005,41(9):25-26. [9]胡彩虹,游兆彤,朱康,等.纳米氧化锌对断奶仔猪生长性能和肠黏膜屏障的影响[J].动物营养学报,2012,24(2):285-290. [10]方桂友,张仁标,邱华玲,等.纳米氧化锌对断乳仔猪生长性能和粪锌排泄量的影响[J].福建畜牧兽医,2013,35(6):12-14. [11]喻兵权,张宏福,陆伟,等.纳米氧化锌对断奶仔猪血液指标及表观性状的影响研究[J].饲料工业,2008,29(4):41-44. [12]田丽娜,朱风华,任慧英,等.纳米氧化锌对肉仔鸡抗氧化性能的影响[J].动物营养学报,2009,17(4):534-539. [13]田丽娜,姜建阳,朱风华,等.纳米氧化锌对肉鸡生长性能和屠宰性能的影响[J].中国农学通报,2009(2):1-5. [14]徐奇友,刘立波,侯奉雨,等.纳米氧化锌对肉仔鸡血清生化指标的影响[J].动物营养学报,2007,19(1):76-80. [15]蒋锦坤,王际英,张利民,等.壳聚糖对虹鳟(Oncorhynchus mykiss)幼鱼生长性能、体组成及非特异性免疫的影响[J].海洋与湖沼,2012,43(4):730-734. [16]火村英,周国勤,杜宣.酵母多糖的提取及其对鱼类非特异性免疫功能的影响[J].生物技术,2004,14(3):45-47. [17]National Research Council(NRC). Nutrient Requirements of Fish and Shrimp[M]. Washington, D C: National Academy Press,2011:176. [18]Kuz′Mina V V. The influence of zinc and copper on the latency period for feeding and the food uptake in common carp, Cyprinus carpio L.[J].Aquatic Toxicology,2011,102(1):73-78. [19]Ogino C, Yang G Y. Requirement of rainbow trout for dietary zinc [J]. Bulletin of the Japanese Society of Scientific Fisheries,1978,44(9):1015-1018. [20]Huang F, Jiang M, Wen H, et al. Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses[J]. Aquaculture,2015,439:53-59. [21]刘汉超,叶元土,蔡春芳,等.团头鲂对饲料中Zn的需求量[J].水产学报,2014,38(9):1522-1529. [22]Hardy R W, Sullivan C V, Koziol A M. Absorption, body distribution, and excretion of dietary zinc by rainbow trout (Salmo gairdneri)[J]. Fish Physiology and Biochemistry,1987,3(3):133-143. [23]樊英,王淑娴,叶海斌,等.黄芪多糖对大西洋牙鲆的免疫影响[J].烟台大学学报:自然科学与工程版,2010,23(增刊):1-4. [24]Powell S R. The antioxidant properties of zinc [J]. Journal of Nutrition,2000,130(5):1447-1454. [25]Vallee B L, Falchuk K H. The biochemical basis of zinc physiology [J]. Physiological Reviews,1993,73(1):79-118. [26]艾庆辉,麦康森.鱼类营养免疫研究进展[J].水生生物学报,2007,31(3):425-430. [27]Onderci M, Sahin N, Sahin K, et al. The antioxidant properties of chromium and zinc: in vivo effects on digestibility, lipid peroxidation, antioxidant vitamins and some minerals under a low ambient temperature [J]. Biological Trace Element Research,2003,92(2):139-150. [28]Hidalgo M C, Expósito A, Palma J M, et al. Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss)[J]. International Journal of Biochemistry and Cell Biology,2002,34(2):183-193. [29]谭丽娜.锌对幼建鲤消化吸收能力、免疫能力和抗氧化功能的影响[D].雅安:四川农业大学,2009:14-80.