Effects of Short-Term Ammonia Nitrogen Stress and Recovery on Red Swamp Crayfish Procambarus clarkii
WU Le1,2,3, LI Jiayao1,2,3, ZHOU Wenzong4, CHENG Yongxu1,2,3
1. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; 2. National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; 3. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; 4. Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
Abstract:In order to investigate effects of ammonia nitrogen stress and recovery on the antioxidant and immune enzyme activities and tissue structure of red swamp crayfish Procambarus clarkii, acute toxicity tests and ammonia nitrogen stress and recovery tests were conducted. In the acute toxicity test,the crayfish with body weight of (6.33±0.73) g were exposed to water with total ammonia nitrogen concentrations of 0, 100.00, 141.42, 200.00, 282.84, and 400.00 mg/L, corresponding to non-ionized ammonia concentrations of 0, 4.02, 5.68, 8.04, 11.37, and 16.07 mg/L. In the ammonia nitrogen stress and recovery test, the crayfish were exposed to 0, 20, 40, 60, and 80 mg/L, the corresponding non-ionized ammonia mass concentrations of 0, 4.02, 5.68, 8.04, 11.37, and 16.07 mg/L. The antioxidant and immune enzyme activities in hepatopancreas, gills, and serum, as well as the structural changes of the hepatopancreas and muscle tissues in each group, were compared at 48 hours of stress and 48 hours of recovery.The results showed that the sub-lethal mass concentrations of ammonia nitrogen on juvenile crayfish was 359.37 mg/L in 24 h, 238.09 mg/L in 48 h, 196.34 mg/L in 72 h, and 162.00 mg/L in 96 h, with safe mass concentration of 16.20 mg/L. There was significantly increase in total superoxide dismutase activity in hepatopancreas in the other treatment groups than that in the control group except for the 20 mg/L group in 48 h of ammonia nitrogen stress.The significant decrease in total antioxidant capacity was observed in the gill and significant increase in the catalase activity in the 80 mg/L group, and significant increase in the total antioxidant capacity inthe serum in the 80 mg/L group. After 48 h of recovery, the content of malondialdehyde in hepatopancreas and gills and the total antioxidant capacity in serum of 60 mg/L group, the catalase activity in gills in the 80 mg/L group were significantly increased compared with the control group, and enzyme activities in other experimental groups was recovered to the same level as the control group. With the increase of ammonia nitrogen concentration for 48 h, the hepatopancreas lumen was gradually deformed, transport vesicles were enlarged, respiratory epithelial cells of the gill began to shed, and microvascular lumen was damaged. After 48 h of recovery,largely normal histological structure of hepatopancreas was found. In the 40, 60 and 80 mg/L groups, the local respiratory epithelial cells were exfoliated and the microvascular lumen was damaged. The results indicate that the damage to the antioxidation, immune enzymes, and tissue structure of the red swamp crayfish caused by 48 h of stress with 20 mg/L ammonia nitrogen are repaired after 48 h of recovery. The gills remain stressed recovered in the crayfish which are subjected to 40, 60, 80 mg/L ammonia nitrogen 48 h stress for 48 hours.
[1] LOUREIRO T G, ANASTÁCIO P M S G, ARAUJO P B, et al. Red swamp crayfish:biology, ecology and invasion-an overview[J]. Nauplius,2015,23(1):1-19. [2] 于秀娟,郝向举,党子乔,等.中国小龙虾产业发展报告(2022)[J].中国水产,2022,559(6):47-54. [3] 郝向举,李巍,汤亚斌.稻渔综合种养技术模式[J].中国水产,2020(12):78-80. [4] 车阳.控混氮肥用量与钵苗栽插密度对虾田水稻综合生产力的影响[D].扬州:扬州大学,2021. [5] 王强,姜丽娜,潘建清,等.一次性施肥稻田田面水氮素变化特征和流失风险评估[J].农业环境科学学报,2019,38(1):168-175. [6] 金洁,杨京平,施洪鑫,等.水稻田面水中氮磷素的动态特征研究[J].农业环境科学学报,2005,24(2):357-361. [7] 冯国禄,杨仁斌.不同耕作模式下稻田水中氮磷动态特征及减排潜力[J].生态学报,2011,31(15):4235-4243. [8] 王娟,曲克明,刘海英,等.不同溶氧条件下亚硝酸盐和氨氮对中国对虾的急性毒性效应[J].海洋水产研究,2007,28(6):1-6. [9] CHEN S J, YU Y Y, GAO Y J, et al. Exposure to acute ammonia stress influences survival,immune response and antioxidant status of Pacific white shrimp (Litopenaeus vannamei) pretreated with diverse levels of inositol[J]. Fish & Shellfish Immunology,2019,89:248-256. [10] QIN F J, SHEN T, YANG H X, et al. Dietary nano cerium oxide promotes growth,relieves ammonia nitrogen stress,and improves immunity in crab (Eriocheir sinensis)[J]. Fish & Shellfish Immunology,2019,92:367-376. [11] 周钱森,任宪云,徐垚,等.氨氮胁迫对锦绣龙虾代谢酶和抗氧化酶活力的影响[J].渔业科学进展,2022,43(2):147-156. [12] 任海,李健,李吉涛,等.急性氨氮胁迫对脊尾白虾(Exopalaemon carinicauda)抗氧化系统酶活力及GPx基因表达的影响[J].农业环境科学学报,2014,33(4):647-655. [13] 杨晨.不同浓度氨氮对中华绒螯蟹肝胰腺的影响[D].沈阳:沈阳农业大学,2020. [14] 洪美玲.水中亚硝酸盐和氨氮对中华绒螯蟹幼体的毒性效应及维生素E的营养调节[D].上海:华东师范大学,2007. [15] 芦光宇,刘国兴,李佳佳,等.氨氮对克氏原螯虾抗氧化功能的影响[J].江西农业学报,2014,26(2):129-133. [16] 史文竞.温度影响下氨氮对克氏原螯虾血淋巴和鳃组织中免疫指标的影响[D].上海:上海海洋大学,2020. [17] 朱毅菲.不同浓度氨氮、不同低pH突变对克氏原螯虾免疫功能的影响[D].武汉:华中农业大学,2006. [18] 罗静波,曹志华,蔡太锐,等.氨氮对克氏原螯虾幼虾的急性毒性研究[J].长江大学学报(自然科学版),2006,3(4):183-185. [19] 钟君伟,朱永安,孟庆磊,等.氨氮对2种规格克氏原螯虾的急性毒性研究[J].长江大学学报(自然科学版),2013,10(23):55-59. [20] 董学兴,吕林兰,赵卫红,等.氨氮胁迫与恢复对罗氏沼虾幼虾非特异性免疫的影响[J].海洋渔业,2018,40(6):713-719. [21] DONG X X, LIU Q G, KAN D Q, et al. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii[J]. Ecotoxicology and Environmental Safety,2020,189:110046. [22] 潘训彬,张秀霞,鲁耀鹏,等.氨氮和亚硝酸盐对红螯螯虾幼虾和亚成虾的急性毒力[J].生物安全学报,2017,26(4):316-322. [23] ZHANG Y F, YE C X, WANG A L, et al. Isolated and combined exposure to ammonia and nitrite in giant freshwater prawn (Macrobrachium rosenbergii):effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes[J]. Ecotoxicology,2015,24(7):1601-1610. [24] 段亚飞,张家松,董宏标,等.副溶血弧菌对斑节对虾非特异性免疫酶活性的影响[J].水产学报,2014,38(9):1557-1564. [25] SOLLID J, NILSSON G E. Plasticity of respiratory structures—adaptive remodeling of fish gills induced by ambient oxygen and temperature[J]. Respiratory Physiology & Neurobiology,2006,154(1/2):241-251. [26] 高蓉,张守刚,肖杭.脱氧鬼臼毒素对斑马鱼(Danio rerio)代谢酶和抗氧化酶活性的影响[J].生态毒理学报,2009,4(5):700-704. [27] 陶易凡,强俊,王辉,等.低pH胁迫对克氏原螯虾鳃和肝胰腺酶活力及组织结构的影响[J].中国水产科学,2016,23(6):1279-1289. [28] 毛阿敏,魏克强,赵辉,等.高效氯氰菊酯对克氏原螯虾(Procambarus clarkii)抗氧化酶活性的影响[J].农业环境科学学报,2013,32(4):689-696. [29] LEPAGE G, MUNOZ G, CHAMPAGNE J, et al. Preparative steps necessary for the accurate measurement of malondialdehyde by high-performance liquid chromatography[J]. Analytical Biochemistry,1991,197(2):277-283. [30] MUTA T, IWANAGA S. The role of hemolymph coagulation in innate immunity[J]. Current Opinion in Immunology,1996,8(1):41-47. [31] 刘存岐,王安利,王维娜,等.海水中几种金属离子对中国对虾幼体体内碱性磷酸酶和ATPase的影响[J].水产学报,2001,25(4):298-303. [32] WEI K Q, YANG J X. Histological alterations and immune response in the crayfish Procambarus clarkii given rVP28-incorporated diets[J]. Fish & Shellfish Immunology,2011,31(6):1122-1128. [33] 洪美玲,陈立侨,顾顺樟,等.氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响[J].中国水产科学,2007,14(3):412-418. [34] 吴峪楠.克氏原螯虾肝胰腺损伤模型的构建与评估[D].上海:上海海洋大学,2020. [35] 童帅旗.铜离子胁迫对中华绒螯蟹的毒性作用及河蟹池塘铜离子监测[D].扬州:扬州大学,2022. [36] 王源源,成永旭,李晨露,等.干露对克氏原螯虾成虾存活、相关代谢酶及组织结构的影响[J].南方水产科学,2021,17(5):34-44. [37] 卢建平.日本沼虾鳃细胞的超微结构[J].东海海洋,2001,19(3):19-24. [38] 杨明,孙盛明,傅洪拓,等.低氧和复氧对日本沼虾抗氧化酶活力及组织结构的影响[J].中国水产科学,2019,26(3):493-503. [39] 王权,王建国,陆宏达,等.硫酸锌慢性毒性胁迫下克氏原螯虾的组织病理[J].中国水产科学,2012,19(1):126-137.