|
|
鱼类遗传连锁图谱构建及QTL定位的研究进展 |
陈军平, 胡玉洁, 王磊, 田雪, 李学军 |
河南师范大学 水产学院,河南省水产动物养殖工程技术研究中心,河南 新乡 453007 |
|
Research Progress on Genetic Linkage Map Construction and Mapping of QTL in Fish: a Review |
CHEN Junping, HU Yujie, WANG Lei, TIAN Xue, LI Xuejun |
Engineering Technology Reasearch Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China |
引用本文: |
陈军平, 胡玉洁, 王磊, 田雪, 李学军. 鱼类遗传连锁图谱构建及QTL定位的研究进展[J]. 水产科学, 2020, 39(4): 620-630.
CHEN Junping, HU Yujie, WANG Lei, TIAN Xue, LI Xuejun. Research Progress on Genetic Linkage Map Construction and Mapping of QTL in Fish: a Review. Fisheries Science, 2020, 39(4): 620-630.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.2020.04.023 或 http://www.shchkx.com/CN/Y2020/V39/I4/620 |
[1]王宣朋,孙效文,李文升,等. 鲤遗传连锁图谱的构建[J]. 上海海洋大学学报,2011,20(5):641-648. [2]常玉梅,孙效文. 水产养殖动物遗传连锁图谱及QTL定位研究进展[J]. 动物学研究,2006,27(5):533-540. [3]王俊,曹英伟,李良玉,等. 水产动物遗传图谱的构建和QTL定位研究进展[J]. 水产科学,2014,33(11):728-734. [4]王伟继,孔杰,董世瑞,等 中国明对虾AFLP分子标记遗传连锁图谱的构建[J]. 动物学报,2006,52(3):575-584. [5]王春艳,俞小牧,童金苟. 鲤鱼多态性EST标记的筛选与特性分析[J]. 水生生物学报,2008,32(2):207-212. [6]孙效文,梁利群. 鲤鱼的遗传连锁图谱(初报)[J]. 中国水产科学,2000,7(1):1-5. [7]Liu H Y, Fu B D, Pang M X, et al. QTL fine mapping and identification of candidate genes for growth-related traits in bighead carp (Hypophthalmichehys nobilis) [J]. Aquaculture,2016,465:134-143. [8]彭文竹,张研,许建,等. 鲤鱼高密度遗传图谱的构建、整合及比较基因组学分析[G]∥2015年中国水产学会学术年会论文摘要集.杭州:中国水产学会,2015. [9]Wan S M, Liu H, Zhao B W, et al. Construction of a high-density linkage map and fine mapping of QTLs for growth and gonad related traits in blunt snout bream [J]. Scientific Reports,2017,7:46509. [10]侯宁,张研,鲁翠云,等. 微卫星DNA标记分析德国镜鲤的遗传潜力[J]. 遗传,2007,29(12):1509-1518. [11]刘奕,王桂兴,周丹,等. 牙鲆身体纵轴生长相关性状QTL定位 [J]. 中国水产科学,2013,20(3):514-520. [12]Wang X, Fu B, Yu X, et al. Fine mapping of growth-related quantitative trait loci in Yellow River carp (Cyprinus carpio haematoperus) [J]. Aquaculture,2018,484:277-285. [13]Lin G, Chua E, Orban L, et al. Mapping QTL for sex and growth traits in salt-tolerant tilapia (Oreochromis spp. × O. mossambicus) [J]. PLoS One,2016,11(11):e0166723. [14]Wang L, Wan Z Y, Bai B, et al. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass[J]. Scientific Reports,2015,5:16358. [15]高国强,常玉梅,匡友谊,等. 利用OneMap软件构建鲤遗传连锁图谱[J]. 水产学报,2010,34(5):649-655. [16]王宣朋. 鲤鱼遗传连锁图谱的构建及饲料转化率性状的QTL定位 [D]. 上海:上海海洋大学,2011. [17]Wang C M, Zhu Z Y, Lo L C, et al. A microsatellite linkage map of barramundi, Lates calcarifer[J]. Genetics,2007,175(2):907-915. [18]Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs [J]. BMC Genomics,2010,11(1):135. [19]Zhang L, Yang G, Guo S, et al. Construction of a genetic linkage map for silver carp (Hypophthalmichthys molitrix) [J]. Animal Genetics,2010,41(5):523-530. [20]Liu F, Sun F, Li J, et al. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus × Oreochromis spp.) and mapping of sex-determining loci[J]. BMC Genomics,2013,14(1):58. [21]Peng W Z, Xu J, Zhang Y, et al. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio) [J]. Scientific Reports,2016,6:26693 [22]Kwssuwan K, Kubota S, Liu Q, et al. Detection of growth-related quantitative trait loci and high-resolution genetic linkage maps using simple sequence repeat markers in the kelp grouper (Epinephelus bruneus)[J]. Marine Biotechnology,2016,18(1):57-84. [23]You X X, Shu L P, Li S S, et al. Construction of high-density genetic linkage maps for orange-spotted grouper Epinephelus coioides using multiplexed shotgun genotyping [J]. BMC Genetics,2013,14(1):113. [24]Nichols K M, Young W P, Danzmann R G, et al. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss) [J]. Animal Genetics,2013,34(2):102-115. [25]Uchino T, Hosoda E, Nakamura Y, et al. Genotyping-by-sequencing for construction of a new genetic linkage map and QTL analysis of growth-related traits in Pacific bluefin tuna[J]. Aquaculture Research,2018,49(3):1293-1301. [26]Pang R Y, Song W T, Gao F T, et al. Construction of genetic linkage map in Japanese flounder (Paralichthys olivaceus) [J]. Journal of Fishery Sciences of China,2012,19(6):930-938. [27]葛学亮,尹洪滨,毕冰,等. 黄颡鱼遗传图谱构建及生长相关性状的QTL定位[J]. 水产学报,2010,34(2):185-193. [28]Xie M M, Ming Y, Shao F, et al. Restriction site-associated DNA sequencing for SNP discovery and high-density genetic map construction in southern catfish (Silurus meridionalis) [J]. Royal Society Open Science,2018,5(5):172054. [29]Kong S N, Ke Q Z, Chen L, et al. Constructing a high-density genetic linkage map for large yellow croaker (Larimichthys crocea) and mapping resistance trait against ciliate parasite Cryptocaryon irritans [J]. Marine Biotechnology,2019,21(2):262-275. [30]Liu H Y, Fu B D, Pang M X, et al. A high-density genetic linkage map and QTL fine mapping for body weight in crucian carp (Carassius auratus) using 2b-RAD sequencing [J]. G3:Genes,Genomes,Genetics,2017,7(8):2473-2487. [31]Wang W J, Hu Y L, Ma Y, et al. High-density genetic linkage mapping in turbot (Scophthalmus maximus L.) based on SNP markers and major sex-and growth-related regions detection [J]. PLoS One,2015,10(3):e0120410. [32]Dong C J, Jiang P, Zhang J F, et al. High-density linkage map and mapping for sex and growth-related traits of largemouth bass (Micropterus salmoides) [J]. Frontiers in Genetics,2019,10:960. [33]Zhu C K, Liu H Y, Pan Z J, et al. Construction of a high-density genetic linkage map and QTL mapping for growth traits in Pseudobagrus ussuriensis[J]. Aquaculture,2019:734213. [34]Zhang S Y, Zhang X H, Chen X H, et al. Construction of a high-density linkage map and QTL fine mapping for growth and sex related traits in channel catfish (Ictalurus punctatus) [J]. Frontiers in genetics,2019,10:251. [35]宋文涛,张潇峮,廖小林,等. 牙鲆微卫星标记遗传连锁图谱的构建[J]. 农业生物技术学报,2011,19(6):981-987. [36]刘奕. 基于牙鲆DH群体的遗传图谱构建及生长相关性状的QTL定位[D].哈尔滨:东北农业大学,2013. [37]Shao C W, Niu Y C, Rastas P, et al. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis[J]. DNA Research,2015,22(2):161-170. [38]Palti Y, Vallejo R L, Gao G T, et al. Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing[J]. PLoS One,2015,10(9):e0138435. [39]Liu S X, Vallejo R L, Palti Y , et al. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout[J]. Frontiers in Genetics,2015,6:298. [40]Gonzalez-pena D, Gao G, Baranski M, et al. Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout (Oncorhynchus mykiss)[J]. Frontiers in Genetics,2016,7:203. [41]Tsai H Y, Robledo D, Lowe N R, et al. Construction and annotation of a high density SNP linkage map of the Atlantic salmon (Salmo salar) genome[J]. G3: Genes,Genomes,genetics,2016,6(7):2173-2179. [42]Uchino T, Nakamura Y, Sekino M, et al. Constructing genetic linkage maps using the whole genome sequence of Pacific bluefin tuna (Thunnus orientalis) and a comparison of chromosome structure among teleost species[J]. Advances in Bioscience and Biotechnology,2016,7(2):85-122. [43]Nunes J D R D S, Liu S K, Pertille F, et al. Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing[J]. Scientific Reports,2017,7:46112. [44]Pang M X, Fu B D, Yu X M, et al. Quantitative trait loci mapping for feed conversion efficiency in crucian carp (Carassius auratus) [J]. Scientific Reports,2017,7(1):16971. [45]Wang L, Xie N, Shen Y B, et al. Constructing high-density genetic maps and developing sexing markers in northern snakehead (Channa argus) [J]. Marine Biotechnology,2019,21(3):348-358. [46]Lin G, Wang L, Ngoh S T, et al. Mapping QTL for omega-3 content in hybrid saline tilapia [J]. Marine Biotechnology,2018,20(1):10-19. [47]Andrews K R, Good J M, Miller M R, et al. Harnessing the power of RADseq for ecological and evolutionary genomics[J]. Nature Reviews Genetics,2016,17(2):81-92. [48]Sun X W, Liu D Y, Zhang X F, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One,2013,8(3):e58700. [49]Elshire R J, Glaubitz J C, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLoS One,2011,6(5):e19379. [50]Wang S, Meyer E, McKay J K, et al. 2b-RAD: a simple and flexible method for genome-wide genotyping[J]. Nature Methods,2012,9(8):808-810. [51]Peterson B K, Weber J N, Kay E H, et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species[J]. PLoS One,2012,7(5):e37135. [52]Liu D Y, Ma C X, Hong W G, et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLoS One,2014,9(6):e98855. [53]Ooijen J W V. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species[J]. Genetics Research,2011,93(5):343-349. [54]Meng L, Li H H, Zhang L Y, et al. QTL IciMapping:integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):269-283. [55]叶华,王志勇. 水产动物遗传连锁图谱构建和QTL研究现状[J]. 海洋科学,2011,35(1):105-110. [56]Palaiokostas C, Bekart M, Khan M G, et al. A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus )[J]. BMC Genomics,2015,16(1):171. [57]李宁,张丽怡,李停,等. 偏分离条件下牙鲆生长性状QTL的主成分定位 [J].中国水产科学,2017,24(3):440-448. [58]Wang J W, Song W T, Jiang L, et al. QTL Interaction of sex determination in half-smooth tongue-sole (Cynoglossus semilaevis) [J]. Journal of Agricultural Biotechnology,2015,23(1):89-95. [59]Cnaania A, Hallerman E M, Ron M, et al. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid[J]. Aquaculture,2003,223(1/4):117-128. [60]Eshel O, Shirak A, Weller J I, et al. Linkage and physical mapping of sex region on LG23 of Nile tilapia (Oreochromis niloticus)[J]. G3:Genes,Genomes,Genetics,2012,2(1):35-42. [61]Wessels S, Krause I, Floren C, et al. ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23[J]. BMC Genomics,2017,18(1):531. [62]Gu X H, Jiang D L, Huang Y, et al. Identifying a major QTL associated with salinity tolerance in Nile tilapia using QTL-Seq[J]. Marine Biotechnology,2018,20(1):98-107. [63]Cui Y, Wang H W, Qin X M, et al. Bayesian analysis for genetic architectures of body weights and morphological traits using distorted markers in Japanese flounder Paralichthys olivaceus[J]. Marine Biotechnology,2015,17(6):693-702. [64]Wang L, Fan C X, Liu Y, et al. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis [J]. Marine Biotechnology,2014,16(5):513-521. [65]Wang X X, Xu W T, Liu Y, et al. Quantitative trait loci detection of Edwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis[J]. Chinese Journal of Oceanology and Limnology,2016,34(6):1297-1308. [66]Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture,2007,272(1/4):291-295. [67]肖同乾. 鲤鳞被相关微卫星标记的筛选及其在连锁图谱上的定位 [D].大连:大连海洋大学,2014. [68]Laghari M Y, Zhang Y, Lashari P, et al. Quantitative trait loci (QTL) associated with growth rate trait in common carp (Cyprinus carpio)[J]. Aquaculture International,2013,21(6):1373-1379. [69]Chen L, Peng W Z, Kong S N, et al. Genetic mapping of head size related traits in common carp (Cyprinus carpio) [J]. Frontiers in Genetics,2018,9:448. [70]Feng X, Yu X M, Fu B D, et al. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus) [J]. BMC Genomics,2018,19(1):230. [71]Wang X P, Zhang X F, Li W S, et al. Mapping and genetuc effect analysis on quantitative trait loci related to feed conversion ratio of common carp(Cyprinus carpio L.) [J]. Acta Hydrobiologica Sinica,2012,36(2):177-196. [72]于彬彬,贾志武,张晓峰,等.镜鲤酸性磷酸酶的QTL分析[J]. 水产学杂志,2012,25(3):15-19. [73]徐玉兰. 镜鲤肝脏、前肠及后肠三个不同组织SOD 酶的QTL 定位[D].上海:上海海洋大学,2012. [74]Boison S, Ding J W, Leder E, et al. QTLs associated with resistance to cardiomyopathy syndrome in Atlantic salmon[J]. Journal of Heredity,2019,110(6):727-737. [75]Pedersen S, Liu L, Glebe B, et al. Mapping of quantitative trait loci associated with size, shape, and parr mark traits using first and second generation backcrosses between European and North American Atlantic salmon (Salmo salar) [J]. Genome,2018,61(1):33-42. [76]Wang L, Bin B, Huang S Q, et al. QTL Mapping for resistance to iridovirus in Asian seabass using genotyping-by-sequencing [J]. Marine Biotechnology,2017,19(5):517-527. [77]Sawayama E, Tanizawa S, Kitamura S I, et al. Identification of quantitative trait loci for resistance to RSIVD in red sea bream (Pagrus major)[J]. Marine Biotechnology,2017,19(6):601-613. [78]Sun C F, Niu Y C, Ye X, et al. Construction of a high-density linkage map and mapping of sex determination and growth-related loci in the mandarin fish (Siniperca chuatsi)[J]. BMC Genomics,2017,18(1):446. [79]Zhang G Q, Zhang X H, Ye H Z, et al. Construction of high-density genetic linkage maps and QTL mapping in the golden pompano[J]. Aquaculture,2018,482:90-95. [80]Doerge W R. Multifactorial genetics mapping and analysis of quantitative trait loci in experimental populations [J]. Nature Reviews Genetics,2002,3(1):43-52. [81]Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action[J]. Genetics,1987,116(1):113-125. [82]尹森. 镜鲤酸性磷酸酶和碱性磷酸酶的QTL分析 [D].上海:上海海洋大学,2012. [83]Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers[J]. Heredity,1992,69(4):315-324. [84]Korol A, Frenkel Z, Orion O, et al. Some ways to improve QTL mapping accuracy[J]. Animal Genetics,2012,43(s1):36-44. [85]Slate J. From beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits[J]. Evolution,2013,67(5):1251-1262. [86]边力,王军. 简化基因组测序技术及其在海洋生物研究中的应用[J]. 厦门大学学报:自然科学版,2017,56(1):3-12. |
[1] |
靳纪明, 路晶晶, 李小勇, 刘文珍, 王玉柱, 刘文舒, 方刘, 郭小泽. 鱼类对高温胁迫响应及机制研究进展[J]. 水产科学, 2025, 44(1): 151-161. |
[2] |
党莹超, 李莎, 苏巍, 胡凡旭, 姜伟. 基于环境DNA技术的宜宾江段秋季鱼类多样性研究[J]. 水产科学, 2024, 43(6): 894-905. |
[3] |
雷天娇, 张韵, 翟东东, 熊飞, 陈元元, 刘红艳. 基于系统发育和功能性状的向家坝库区鱼类群落构建机制[J]. 水产科学, 2024, 43(6): 944-954. |
[4] |
周寅鑫, 刘海波, 胡伟, 任效忠, 李猛. 鱼类趋流性在循环水养殖系统中的应用与展望[J]. 水产科学, 2024, 43(5): 822-832. |
[5] |
张琴, 王洪, 陈煜, 赵大显, 盛军庆, 张万昌. 荷包红鲤、彭泽鲫和萍乡红鲫肌间骨的比较分析[J]. 水产科学, 2024, 43(5): 767-774. |
[6] |
余欣欣, 郑国栋, 陈杰, 邹曙明. 低氧胁迫对鱼类影响的研究进展[J]. 水产科学, 2024, 43(2): 333-340. |
[7] |
王小林, 吉光, 张怡晶, 王爱勇, 董婧, 刘修泽. 辽东湾鱼类群落结构的季节变化特征[J]. 水产科学, 2023, 42(6): 996-1005. |
[8] |
薛颖昊, 张明明, 徐志宇, 冯良山, 孙占祥, 贾涛, 刘东生. 水环境中微塑料的来源分布及对鱼类的生态毒性效应[J]. 水产科学, 2023, 42(6): 1081-1090. |
[9] |
颜研, 李旭东, 裴超, 孔祥会. 鱼类铁调素生物学功能与体外表达的研究进展[J]. 水产科学, 2023, 42(5): 901-910. |
[10] |
刘红艳, 熊飞, 翟东东, 王莹, 夏明, 陈元元. 鲿科鱼类DNA条形码鉴定及系统进化研究[J]. 水产科学, 2023, 42(4): 575-584. |
[11] |
姜洁明, 刘鹰, 刘奇, 闫红伟. 硬骨鱼类性别分化过程的表观遗传机制研究进展[J]. 水产科学, 2023, 42(4): 726-734. |
[12] |
丁祝进, 崔虎军, 谷昭天, 赵晓恒, 程汉良. 鱼类巨噬细胞标记物的研究进展[J]. 水产科学, 2023, 42(3): 517-526. |
[13] |
刘修泽, 吉光, 王彬, 段妍, 王小林, 王爱勇, 柴雨, 孙明, 郭栋, 董婧, 王源元, 田杨. 大连海域5种经济鱼类的生长、死亡及资源合理利用研究[J]. 水产科学, 2023, 42(1): 73-80. |
[14] |
唐晟凯, 刘燕山, 王华, 李大命, 张彤晴, 孙晶莹, 许飞, 王志浩. 环境DNA技术在邵伯湖鱼类资源监测中的应用[J]. 水产科学, 2022, 41(6): 1007-1016. |
[15] |
田源, 吴耀, 祝国荣, 赵高志, 林茜, 姚德政, 彭俊杰. 淡水养殖中水生植物对水产鱼类的作用研究进展[J]. 水产科学, 2022, 41(2): 336-342. |
|
|
|
|